The irlba Package

Bryan W. Lewis
blewis@Qillposed.net,

adapted from the work of:
Jim Baglama (University of Rhode Island)
and Lothar Reichel (Kent State University).

October 10, 2015

1 Introduction

The irlba package provides a fast way to compute partial singular value decompositions (SVD) of
large matrices. Recent additions to the package can also compute fast partial symmetric eigenvalue
decompositions. The package is an R implementation of the augmented implicitly restarted Lanczos
bidiagonalization algorithm of Jim Baglama and Lothar Reichel'. Source code is maintained at
https://github.com/bwlewis/irlba. An old introductory example using the Netflix prize data set
can be found at http://goo.gl/fRech.

The irlba package works with real- and complex-valued dense R matrices and real-valued sparse
matrices from the Matrix package. The package provides a simple way to define custom matrix
arithmetic that works with other matrix classes including big.matrix from the bigmemory package
and others. The irlba is both faster and more memory efficient than the usual R svd function for
computing a few of the largest singular vectors and corresponding singular values of a matrix. The
package takes advantage of available high-performance linear algebra libraries if R is compiled to
use them.

A whirlwind summary of the algorithm follows, along with a few basic examples. See the com-
panion package vignette for more substantial applications. A much more detailed description and
discussion of the algorithm may be found in the cited Baglama-Reichel reference.

! Augmented Implicitly Restarted Lanczos Bidiagonalization Methods, J. Baglama and L. Reichel, SIAM J. Sci.
Comput. 2005.

https://github.com/bwlewis/irlba
http://goo.gl/fRech

The irlba Package

2 Partial Singular Value Decomposition

Let A € R and assume ¢ > n. These notes simplify the presentation by considering only real-
valued matrices and assuming without losing generality that there are at least as many rows as
columns (the method works more generally). A singular value decomposition of A can be expressed
as:

3

o T o T o]_ lf] — k,
A= ojuv; Vj U = U up = { 0 ow..

where u; € RY, v;eR", j=1,2,...,n,and oy > 09y > --- >0, > 0.
Let 1 <k <n. A rank k partial SVD of A is defined as:

k

,_ T

A = E ojUV; .
=1

The following simple example shows how to use irlba to compute the five largest singular values
and corresponding singular vectors of a 5000 x 5000 matrix. We compare to the usual R svd function
and report timings for our test machine, an 8-CPU core, 2.0 GHz AMD Opteron server with 16 GB
RAM, using R version 2.13.0 compiled with the high performance AMD ACML core math libraries.

> library(’irlba’)

A <- matrix(rnorm(5000%5000), 5000)
tl <- proc.time()

L <- irlba(A, nu=5, nv=5)
print(proc.time() - t1)

user system elapsed
41.640 0.470 36.985
> gc()

>
>
>
>

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 137098 7.4 350000 18.7 350000 18.7
Vcells 25180235 192.2 52881183 403.5 52881005 403.5

Now, compare with the standard svd function:

> t1 <- proc.time()

> S <- svd(A, nu=5, nv=5)

> print (proc.time() - t1)
user system elapsed

616.035 4.396 187.371

> gec()

The irlba Package

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 137109 7.4 350000 18.7 350000 18.7
Vcells 25235234 192.6 168397903 1284.8 200272760 1528.0

Compare the singular values computed by each method:

> sqrt (crossprod(S$d[1:5]-L$d)/crossprod(S$d[1:5]))
[,1]

[1,] 1.56029e-12

The irlba method uses less than one tenth total CPU time as the svd method in this example,
less than one fifth the total run time, and about one fourth the peak memory.

2.1 Differences with svd

The irlba function is designed to compute a partial singular value decomposition. It is largely
compatible with the usual R svd function but there are some differences. In particular:

1. The irlba function only computes the number of singular values corresponding to the max-
imum of the desired singular vectors, max(nu, nv). For example, if 5 singular vectors are
desired (nu=nv=5), then only the five corresponding singular values are computed. The stan-
dard R svd function always returns the total set of singular values for the matrix, regardless
of how many singular vectors are specified.

2. The irlba function is an iterative method that continues until either a tolerance or maximum
number of iterations is reached. There exists pathological problems for which irlba does
not converge (see the references for more information). Such problems are not likely to be
encountered, but the method will fail with an error after the iteration limit is reached in those
cases.

Watch out for the first difference noted above!

2.2 Principal Components

Version 2.0.0 of the package introduces simple syntax for efficiently computing partial SVDs of
matrices after centering and scaling their columns and other adjustments. These options are useful,
for example, to compute principal components analysis (PCA). Three categories of options are
available:

e center: if center is a numeric vector with length equal to the number of columns of the
matrix, then each column of the matrix has the corresponding value from center subtracted
from it.

The irlba Package

e scale: if 'scale’ is a numeric vector with length equal to the number of columns of the matrix,
then each column is divided by the corresponding value from scale.

e du, ds, dv: Optional real-valued deflation parameters to compute the rank-one deflated
partial SVD of A - dsxdu %x% t(dv), where A is the data matrix, ds a real-valued scalar,
and du and dv real-valued numeric vectors defining the subspace such that t(du) %*% (A -
ds * du %*% t(dv)) = 0. See the appendix for more information.

In particular, you can use the center option for PCA. The following example compares the output
of irlba with the prcomp function. Note that in general, singular vectors and principal component
vectors are only unique up to sign!

> set.seed(1)
> A <- matrix(runif (200),nrow=20)
> P <- irlba(A, nv=1, center=colMeans(4))
> cbind (P$v, prcomp(A)$rotation[,1])
[,1] [,2]
[1,] -0.46776256 0.46776158
[2,] 0.26335590 -0.26335688
[3,] 0.40484529 -0.40484233
[4,] 0.20867236 -0.20867277
[5,] -0.35983641 0.35983677
[6,] 0.47980186 -0.47980195
[7,] -0.04156462 0.04156139
[8,] 0.34337641 -0.34338070
[9,] 0.07680945 -0.07680577
[10,] -0.13846032 0.13846091

The implementation of the center and deflation options take advantage of computational efficiencies
in the IRLB algorithm that result in a modest savings of a few vector inner products per iteration
compared to a naive implementation that replaces the matrix product A %*% x with A %*% x -
ds*du %*% t(dv) %x*J% x—see the appendix for more information.

2.3 User-Defined Matrix Multiplication

The irlba function includes an option for specifying a custom matrix multiplication function. Use
this option, for example, the big.matrix class from the bigmemory/bigalgebra packages, or to
compute the partial SVD of matrix-free linear operators, for example.

User-defined matrix operations are specified using the optional mult parameter. If defined, it
must be a function of two arguments that computes matrix vector products. Either argument can
be a vector, and the mult function must deal with that. The following example illustrates a simple

The irlba Package

custom matrix function that scales the columns of the matrix, and then compares it with other
ways of doing the same thing.

> set.seed(1)
> A <- matrix(runif (200),nrow=20)
> mult <- function(x,y)
+ {
check if x is a plain, row or column vector
if(is.vector(x) || ncol(x)==1 || nrow(x)==1)
{
return((x %*J, y)/col_scale)
}
else x is the matrix
x 4*% (y/col_scale)
}

+ + + + + + + +

> irlba(A, 3, mult=mult)$d
[1] 2.8383609 0.7442858 0.6470490

> # Compare with:
> irlba(A, 3, scale=col_scale)$d
[1] 2.8383609 0.7442858 0.6470492

> # Compare with:

> svd(sweep(4,2,col_scale,FUN=‘/¢))$d[1:3]

[1] 2.8383609 0.7442858 0.6470492

Due to technical implementation details, you are prohibited from using custom matrix product
functions together with the rank 1 deflation options. However, custom matrix products are powerful

and you can easily craft such a function to perform arbitrary subspace deflation within the function
itself.

3 A Quick Summary of the IRLBA Method

3.1 Partial Lanczos Bidiagonalization

Start with a given vector p;. Compute m steps of the Lanczos process:

The irlba Package

APm = QmBm
ATQ,, = PmBglermefl,

Bm c Rmxm7pm c Rnxm’ Qm c fom,
rm € R, Py, =0,

Pm - [p17p27 s 7pm]

3.2 Approximating Partial SVD with A Partial Lanczos bidiagonaliza-
tion

ATAP, = ATQ,.B,,
= P,.BIB,, +rnel B,

AATQ,, APmBZ,; + Armeﬁ,

= QmBmBZL + Armeﬁ.

Compute the SVD of B,,:

(i.e., BmUJB = af’uf, and BTy = U-BU]B.)

A?jj = APmUjB
QmBmv}

_ B B
- Uj Qmu]‘

The irlba Package

and
AT'&J = ATQm'U/]B

P Blu? +rpe

T B
muj
T
m

B

_ B B
= 0 vaj + e U

= 6']1~}j + '7'7716’,211,]5.
The part in red above represents the error with respect to the exact SVD. The IRLBA strategy is
to iteratively reduce the norm of that error term by augmenting and restarting.

Here is the overall method:

1. Compute the Lanczos process up to step m.

Compute k < m approximate singular vectors.

Orthogonalize against the approximate singular vectors to get a new starting vector.
Continue the Lanczos process with the new starting vector for m more steps.

Check for convergence tolerance and exit if met.

GOTO 1.

ISEI AN B R

3.3 Sketch of the augmented process...

Pk+1 = [Ul,Uz,...,Uk,pm+1],

APk—H = [5‘1@1, 5‘1&2, e ,5‘kﬂk, Apm-i—l]

Orthogonalize Ap,, 1 against {ﬂj}j?:l: APy = Zle Pt + 7.

Qrsr = (U1, U2, . .., G, 73/ |7]]],
5’1 P1
_ op P2
By =
Pk
7%l

APyt = Q1B

4 Truncated symmetric eigenvalue decomposition

5 Appendix: deflation

	Introduction
	Partial Singular Value Decomposition
	Differences with svd
	Principal Components
	User-Defined Matrix Multiplication

	A Quick Summary of the IRLBA Method
	Partial Lanczos Bidiagonalization
	Approximating Partial SVD with A Partial Lanczos bidiagonalization
	Sketch of the augmented process...

	Truncated symmetric eigenvalue decomposition
	Appendix: deflation

