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Abstract

Causal effect identification considers whether an interventional probability distri-
bution can be uniquely determined without parametric assumptions from measured
source distributions and structural knowledge on the generating system. While com-
plete graphical criteria and procedures exist for many identification problems, there are
still challenging but important extensions that have not been considered in the liter-
ature. To tackle these new settings, we present a search algorithm directly over the
rules of do-calculus. Due to generality of do-calculus, the search is capable of taking
more advanced data-generating mechanisms into account along with an arbitrary type
of both observational and experimental source distributions. The search is enhanced
via a heuristic and search space reduction techniques. The approach, called do-search,
is provably sound, and it is complete with respect to identifiability problems that have
been shown to be completely characterized by do-calculus. When extended with ad-
ditional rules, the search is capable of handling missing data problems as well. With
the versatile search, we are able to approach new problems such as combined trans-
portability and selection bias, or multiple sources of selection bias. We also perform a
systematic analysis of bivariate missing data problems and study causal inference under
case-control design.

A modification of (Tikka et al., 2019).

1 Introduction

A causal effect is defined as the distribution P (Y |do(X),Z) where variables Y are observed,
variables X are intervened upon (forced to values irrespective of their natural causes) and
variables Z are conditioned on. Instead of placing various parametric restrictions based on
background knowledge, we are interested in this paper in the question of identifiability: can
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the causal effect be uniquely determined from the distributions (data) we have and a graph
representing our structural knowledge on the generating causal system.

In the most basic setting we are identifying causal effects from a single observational
input distribution, corresponding to passively observed data. To solve such problems more
generally than what is possible with the back-door adjustment (Spirtes et al., 1993; Pearl,
2009; Greenland et al., 1999), Pearl (1995) introduced do-calculus, a set of three rules that
together with probability theory enable the manipulation of interventional distributions.
Shpitser and Pearl (2006a) and Huang and Valtorta (2006) showed that do-calculus is
complete by presenting polynomial-time algorithms whose each step can be seen as a rule
of do-calculus or as an operation based on basic probability theory. The algorithms have
a high practical value because the rules of do-calculus do not by themselves provide an
indication on the order in which they should be applied. The algorithms save us from
manual application of do-calculus, which is a tedious task in all but the simplest problems.

Since then many extensions of the basic identifiability problem have appeared. In identi-
fiability using surrogate experiments (Bareinboim and Pearl, 2012b), or z-identifiability, an
experimental distribution is available in addition to the observed probability distribution.
For data observed in the presence of selection bias, both algorithmic and graphical identi-
fiability results have been derived (Bareinboim and Tian, 2015; Correa et al., 2018). More
generally, the presence of missing data necessitates the representation of the missingness
mechanism, which poses additional challenges (Mohan et al., 2013; Shpitser et al., 2015).
Another dimension of complexity is the number of available data sources. Identification
from a mixture of observational and interventional distributions that originate from multi-
ple conceptual domains is known as transportability for which complete solutions exist in
a specific setting (Bareinboim and Pearl, 2014). Most of these algorithms are implemented
in the R package causaleffect (Tikka and Karvanen, 2017a).

While completeness has been accomplished for a number of basic identifiability problems,
there are still many challenging but important extensions to the identifiability problem that
have not been studied so far. Table 1 recaps the current state of the art identifiability
results; it also describes generalizations that we aim to investigate in this paper. To find
solutions to the more complicated identifiability problems, we present a unified approach to
the identification of observational and interventional causal queries by constructing a search
algorithm that directly applies the rules of do-calculus. We impose no restrictions to the
number or type of known input distributions: we thus provide a solution to problems for
which no algorithmic solutions exist (row 7 in Table 1). We also extend to identifiability
under missing data together with mechanisms related to selection bias and transportability
(row 10 in Table 1).

To combat the inherent computational complexity of such a search-based approach, we
derive rules and techniques that avoid unnecessary steps. We also present a search heuristic
that considerably speeds up the search in the cases where the effect is indeed identifiable.
The approach, called do-search, is provably sound and it retains the completeness in the
cases previously proven to be solved by do-calculus rules. We can easily scale up to the
problems sizes commonly reported in the literature. An R package (R Core Team, 2018)
implementing do-search is also available on CRAN at:

https://CRAN.R-project.org/package=dosearch
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Missing
Problem Input data Solution
(Reference) Target (assumptions) pattern (complete)

1 Causal effect identifiability P (Y | do(X)) P (V) None ID (Yes)
(Shpitser and Pearl, 2006a)

2 Causal effect identifiability P (Y | do(X),Z) P (V) None IDC (Yes)
(Shpitser and Pearl, 2006b)

3 z-identifiability P (Y | do(X),Z) P (V), P (V \Bi |do(B)) None zID (Yes)
(Bareinboim and Pearl, 2012b) (NE, ED)

4 mz-transportability P (Y | do(X),Z) {P (V \ (Bi ∪Ti) | do(Bi),Ti)} None TRmz (Yes)
(Bareinboim and Pearl, 2014) (NEDD, ED)

5 Surrogate outcome P (Y | do(X),Z) {P (Ai |do(Bi),Ci)} None TRSO (No)
identifiability (NE, SO)
(Tikka and Karvanen, 2018b)

6 Selection bias recoverability P (Y | do(X),Z) P (V |S) Selection RC (?)
(Bareinboim and Tian, 2015)

7 Generalized identifiability P (Y | do(X),Z) {P (Ai |do(Bi),Ci)} None None

8 Missing data recoverability P (V) P (V∗) Restricted Thm. 2 (Yes)
(Mohan et al., 2013)

9 Missing data recoverability P (V) P (V∗) Arbitrary MID (?)

(Shpitser et al., 2015)

10 Generalized identifiability P (Y | do(X),Z) {P (A∗i | do(Bi),C
∗
i )} Arbitrary None

with missing data

Table 1: Solved and unsolved problems (in bold italic) in causal identification. Input P (V)
stands for passively observed joint distribution of all variables. Input P (V∗) is
the joint distribution with missing data (see Section 5). Input P (V |S) means
the joint distribution under selection bias. Input P (V \ B | do(B)) stands for an
experiment where all variables are measured and input P (A |do(B)) stands for an
experiment where only a subset A ⊂ V of the variables is measured. Notation {·}
denotes a set of inputs enumerated by the index i. The variable sets present in
the same distribution are disjoint. The assumptions of nested experiments (NE),
entire distributions (ED) and nested experiments in different domains (NEDD)
are explained in Section 2. Assumptions related to surrogate outcomes (SO) can
be found in (Tikka and Karvanen, 2018b). The last column tells the algorithm or
result that can be used to solve the problem and whether it provides a complete
solution to the problem, or whether the completeness status is not known (?). An
algorithm is complete if it returns a formula when the target query is identifiable.
Problems 1–6 are special cases of problem 7 and problems 1–9 are special cases of
problem 10.

The paper is structured as follows. Section 2 formulates our general search problem
and explains the scenarios in Table 1 and previous research in detail. Section 3 presents
the search algorithm, including the rules we use, search space reduction techniques, heuris-
tics, theoretical properties, and finally simulations that demonstrate the efficacy of the
search. Section 4 shows a number of new problems for which we can find solutions by using
the search. These problems include combined transportability and selection bias, multi-
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ple sources of selection bias, and causal effect identification from arbitrary (experimental)
distributions. Section 5 shows how the search can be extended to problems that involve
missing data. This section also includes a systematic analysis of missing data problems
and case-control designs. Section 6 discusses the merits and limitations of the approach.
Section 7 offers concluding remarks.

2 The General Causal Effect Identification Problem

Our presentation is based on Structural Causal Models (SCM) and the language of directed
graphs. We assume the reader to be familiar with these concepts and refer them to detailed
works on these topics for extended discussion and descriptions, such as (Pearl, 2009) and
(Koller and Friedman, 2009). Following the standard set-up of do-calculus (Pearl, 1995),
we assume that the causal structure can be represented by a semi-Markovian causal graph
G over a set of vertices V (see Fig 1(a) for example). The directed edges correspond to
direct causal relations between the variables (relative to V); directed edges do not form any
cycles. Confounding of any two observed variables in V by some unobserved common cause
is represented by a bidirected edge between the variables.

In a non-parametric setting, the problem of expressing a causal quantity of interest in
terms of available information has been be described in various ways depending on the
context. When available data are affected by selection bias or missing data, a typical goal
is to “recover” some joint or marginal distributions. If data are available from multiple
conceptual domains, a distribution is “transported” from the source domains, from which a
combination of both observational and experimental data are available, to a target domain.
The aforementioned can be expressed in the SCM framework by equipping the graph of the
model with special vertices. However, on a fundamental level these problems are simply
variations of the original identifiability problem of causal effects and as such, our goal is to
represent them as a single generalized identifiability problem. Formally, identifiability can
be defined as follows (Pearl, 2009; Shpitser and Pearl, 2008).

Definition 1 (Identifiability). Let M be a set of models with a description T and two
objects φ and θ computable from each model. Then φ is identifiable from θ in T if φ is
uniquely computable from θ in any model M ∈M. In other words, all models in M which
agree on θ also agree on φ.

In the simplest case, the description T refers to the graph induced by causal model, θ
is the joint distribution of the observed variables P (V) and the query φ is a causal effect
P (Y | do(X)). On the other hand, proving non-identifiability of φ from θ can be obtained
by describing two models M1,M2 ∈M such that θ is the same in M1 and M2, but object
φ in M1 is different from φ in M2.

The general form for a causal identifiability problem that we consider in this paper is
formulated as follows.

Input: A set of input distributions of the form P (Ai | do(Bi),Ci), a query P (Y | do(X),Z)
and a semi-Markovian causal graph G over V.

Task: Output a formula for the query P (Y | do(X),Z) over the input distributions, or
decide that it is not identifiable.
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Here Ai,Bi,Ci are disjoint subsets of V for all i, and X,Y,Z are disjoint subsets of V. The
causal graph G may contain vertices which describe mechanisms related to transportability
and selection bias. In the following subsections we explain several important special cases
of this problem definition, some that have been considered in the literature and some which
have not been.

2.1 Previously Considered Scenarios as Special Cases

We restate the concepts of transportability and selection bias under the causal inference
framework, and show that identifiability in the scenarios of rows 1–6 of Table 1 falls under
the general form on row 7. We return to problems that involve missing data on rows 8–10
later in Section 5.

Causal Effect Identification Input is restricted to a passive observational distribution
P (V). The target is either a causal effect P (Y |do(X)) for row 1 of Table 1 or a conditional
causal effect P (Y |do(X),Z) for row 2 of Table 1 (Shpitser and Pearl, 2006a,b).

z-identifiability Similarly to ordinary causal effect identification, the input consists of
the passive observational distribution P (V) but also of experimental distributions known
as surrogate experiments on a set B (Bareinboim and Pearl, 2012b). Two restricting as-
sumptions, called here nested experiments and entire distributions, apply to surrogate ex-
periments. Experiments are called nested experiments (NE) when for each experiment
intervening a set of variables B, experiments intervening on all subsets of B are available
as well. Entire distributions (ED) denote the assumption that the union of observed and
intervened variables is always the set of all variables V.

Surrogate Outcome Identifiability Surrogate outcomes generalize the notion of sur-
rogate experiments from z-identifiability. For surrogate outcomes, the assumption of nested
experiments still holds, but the assumption of entire distributions can be dropped. Some
less strict assumptions (SO) still apply (Tikka and Karvanen, 2018b). The idea of surro-
gate outcomes is that data from previous experiments are available, but the target Y was
at most only partially measured in these experiments and the experiments do not have to
be disjoint from X.

Transportability The problem of incorporating data from multiple causal domains is
known as transportability (Bareinboim and Pearl, 2013). Formally, the goal is to identify
a query in a target domain π∗ using data from source domains π1, . . . , πn. The domains
are represented in the causal graph using a special set of transportability nodes T which is
partitioned into disjoint subsets T1, . . . ,Tn corresponding to each domain πi. The causal
graph contains an extra edge Tij → Vj whenever a functional discrepancy in fVj or in
P (uVj ) exists between the target domain π∗ and the source domain πi. The discrepancy
is active if Tij = 1 and inactive otherwise. A distribution associated with a domain πi
is of the form P (A |do(B),C,Ti = 1,T−i = 0). In other words, only the discrepancies
between the πi and π∗ are active. A distribution corresponding to the target domain has no
active discrepancies meaning that it is of the form P (A |do(B),C,T = 0). Any variable is
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conditionally independent from inactive transportability nodes since their respective edges
vanish. Furthermore, since transportability nodes set to 0 vanish, we can assume any present
transportability node to have the value 1. Thus an input distribution from a domain πi takes
the form P (A | do(B),C,Ti). In the specific case of mz-transportability, the assumptions
of entire distributions (ED) and nested experiments in different domains (NEDD) apply,
which means that P (V\ (B′i∪Ti) | do(B′i),Ti) is available for every subset B′i of Bi in each
domain πi.

Selection Bias Recoverability Selection bias can be seen as a special case of missing
data, where the mechanism responsible for the preferential selection is represented in the
causal graph by a special sink vertex S (Bareinboim and Pearl, 2012a). Typical input for
the recoverability problem is P (V |S = 1), the joint distribution observed under selection
bias. Just as in the case of transportability nodes, selection bias nodes only appear when
the mechanism has been enabled. Thus we may assume that the input is of form P (V |S).
More generally, we can consider input distributions of the form P (A | do(B),C, S).

2.2 New Scenarios as Special Cases

The following settings are special cases of the general identifiability problem of row 7 in
Table 1, that do not fall under any of the problems of rows 1–6. They serve as interesting
additions to the cases considered in the literature. Concrete examples on these new scenarios
are presented in Section 4. Section 5 extends the general problem of row 7 in Table 1 to
the general problem with missing data on row 10 while also showcasing the special cases of
rows 8 and 9.

Multiple Data Sources with Partially Overlapping Variable Sets The scenario
where only subsets of variables are ever observed together has been extensively considered in
the causal discovery literature (Danks et al., 2009; Tillman and Spirtes, 2011; Triantafillou
et al., 2010), but not in the context of causal effect identification. In the basic setting
the input consists of passively observed distributions P (Ai) such that Ai ⊂ V. We may
also observe experimental distributions P (Ai | do(Bi)) (Hyttinen et al., 2012; Triantafillou
and Tsamardinos, 2015) or even conditionals P (Ai |do(Bi),Ci). Our approach sets no
limitations for the number and types of input distributions.

Combining Transportability and Selection Bias To the best of our knowledge, the
frameworks of transportability and selection bias have not been considered simultaneously.
The combination of these scenarios fits into the general problem formulation. For example,
we may have access to two observational distributions originating from different source do-
mains, but affected by the same biasing mechanism: P (A1 |C1, T1, S) and P (A2 |C2, T2, S),
where T1 and T2 are the transportability nodes corresponding to the two source domains
and S is the selection bias node.

Recovering from Multiple Sources of Selection Bias In recent literature on selection
bias as a causal inference problem, the focus has been on settings where only a single
selection bias node is present (e.g. Bareinboim et al., 2014; Correa and Bareinboim, 2017;
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Algorithm 1 An outline of a search for causal effect identification.

Input: Target Q = P (Y | do(X),W), a semi-Markovian graph G and a set of known input
distributions P = {P1, . . . , Pn}.

Output: A formula for Q or NA if the effect is not identifiable.
1: for each Pi ∈ P do
2: Derive new distributions computable from Pi such that:

• The required d-separation criteria are satisfied by G.
• For multiple inputs, both inputs must be in P.

3: Add the new identified distributions to P.
4: If Q was derived, return a formula for it.
5: Return NA.

Correa et al., 2018). However, multiple sources of selection bias are typical in longitudinal
studies where dropout occurs at different stages of the study. Our approach is applicable
for an arbitrary number of selection bias mechanisms and input distributions affected by
arbitrary combinations of these mechanisms. In other words, if S is the set of all selection
bias nodes present in the graph, the inputs can take the form P (A | do(B),C,S′), where S′

is an arbitrary subset of S.

3 A Search Based Approach for Causal Effect Identification

The key to identification of causal effects is that interventional expressions can be manip-
ulated using the rules of do-calculus. We present these rules for augmented DAGs where
an additional intervention variable IX such that IX → X is added to the induced graph for
each variable X (Spirtes et al., 1993; Pearl, 2009; Lauritzen, 2000) (see Figure 1(b)). Now a
d-separation condition of the form Y ⊥⊥ Z |X,W ||X means that Y and Z are d-separated
by X and W in a graph where edges incoming to (intervened) X have been removed (Hytti-
nen et al., 2015; Dawid, 2002). The three rules of do-calculus Pearl (1995) can be expressed
as follows:

P (Y | do(X),Z,W) = P (Y | do(X),W), if Y ⊥⊥ Z |X,W ||X
P (Y | do(X,Z),W) = P (Y | do(X),Z,W), if Y ⊥⊥ IZ |X,Z,W ||X
P (Y | do(X,Z),W) = P (Y | do(X),W), if Y ⊥⊥ IZ |X,W ||X

The rules are often referred to as insertion/deletion of observations, exchange of actions
and observations, and insertion/deletion of actions respectively. Each rule of do-calculus is
only applicable if the accompanying d-separation criterion (on the right-hand side) holds in
the underlying graph. In addition to these rules, most derivations require basic probability
calculus.

Do-calculus directly motivates a forwards search over its rules. The outline of this type
of search is given in Algorithm 1. The algorithm derives new identifiable distributions
based on what has been given as the input or identified in the previous steps. For each
identified distribution every rule of do-calculus and standard probability manipulations of
marginalization and conditioning are applied in succession, until the target distribution is
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(a) Example graph.

IX

X Y

Z

(b) Augmented graph.

P (X,Y, Z)

P (Z) P (Y |X,Z)

P (Z |do(X)) P (Y |do(X), Z)

P (Y,Z |do(X))

P (Y |do(X))

M C

R3 R2

P P

M

(c) A derivation for P (Y |do(X)).

Figure 1: The back-door criterion holds in the example graph (a) for Z. The augmented
graph (b) includes the intervention node IX for X explicitly. The labels M, C, P,
R2 and R3 in the derivation of (c) refer to marginalization, conditioning, product
rule and rules 2 and 3 of do-calculus respectively (see Table 2). The required
d-separation conditions Y ⊥⊥ IX |Z,X for R2 and Z ⊥⊥ IX for R3 hold in the
augmented graph (b).

found, or no new distributions can be found to be identifiable. A preliminary version of
this kind of search is used by Hyttinen et al. (2015) as a part of an algorithmic solution to
causal effect identifiability when the underlying graph is unavailable.

The formulas produced by Algorithm 1 correspond to short derivations and unnecessarily
complicated expressions are avoided. Also, only distributions guaranteed to be identifiable
are derived and used during the search. Formulas for intermediary queries that were identi-
fied during the search are also available as a result. Alternatively, one could also start with
the target and search towards the input distributions; a search in this direction will spend
time deriving a number expressions that are anyway non-identifiable based on the input. A
depth-first search would produce unnecessarily complicated expressions.

The search can easily derive for example the back-door criterion in the graph of Fig-
ure 1(a) as shown by the derivation in Figure 1(c). The target is Q = P (Y |do(X)) and
input is P = {P (X,Y, Z)}. From P (X,Y, Z) the search first derives the marginal P (Z)
and the conditional P (Y |X,Z). Then P (Z |do(X)) is derived by the third rule of do-
calculus because Z ⊥⊥ IX . The second rule derives P (Y |do(X), Z) from P (Y |X,Z) as
Y ⊥⊥ IX |Z,X. The two terms can be combined via the product rule of probability calculus
to get P (Y,Z |do(X)) and finally the target is P (Y |do(X)) is just a marginalization of
this. The familiar formula

∑
Z P (Y |X,Z)P (Z) is thus obtained.

However, it is not straightforward to make a search over do-calculus computationally
feasible. The search space in Figure 1(c) shows only the parts that resulted in the identifying
formula: for example all passively observed marginals and conditionals over V can be
derived from the input P (V). Especially in a non-identifiable case a naive search may go
through a huge space before it can return the non-identifiable verdict. The choice of rules
is also not obvious: a redundant rule may make the search faster or slower; false non-
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Rule Additional Input Output Description
1+ P (Y |do(X),Z,W) Insertion of observations
1− P (Y |do(X),W \ Z) Deletion of observations
2+ P (Y |do(X,Z),W \ Z) Observation to action exchange
2− P (Y |do(X \ Z),Z,W) Action to observation exchange
3+ P (Y |do(X,Z),W) Insertion of actions
3− P (Y |do(X \ Z),W) Deletion of actions
4 P (Y \ Z |do(X),W) Marginalization
5 P (Y \ Z |do(X),Z,W) Conditioning
6+ P (Z |do(X),W \ Z) P (Y,Z |do(X),W) Chain rule multiplication
6− P (Z |do(X),Y,W) P (Y,Z |do(X),W) Chain rule multiplication

Table 2: The rules used to manipulate input distributions of the form P (Y |do(X),W).
The output distribution is identified if the input is identified and if the corre-
sponding d-separation criteria hold in the graph (for rules 1±, 2± and 3±) or if
the additional input has also been identified (rules 6±). The sets Y,X and W are
disjoint. The role of the set Z depends on the rule being applied.

identifiability may be concluded if a necessary rule is missing. Also the order in which the
rules are applied can have a large impact on the performance of the search. In the following
sections we will provide highly non-trivial solutions to these challenges.

3.1 Rules

Table 2 lists the full set of rules used to manipulate distributions during the search, gener-
alizing Hyttinen et al. (2015).

Do-calculus Rules 1±, 2± and 3± correspond to the rules of do-calculus such that rules
1+, 2+, 3+ are used to add conditional variables and interventions and rules 1−, 2−, 3− are
used to remove them. Each rule is only valid if the corresponding d-separation criterion
given in the beginning of Section 3 hold.

Probability theory Rule 4 performs marginalization over Z ⊂ Y, and produces a sum-
mation at the formula level:

P (Y \ Z |do(X),W) =
∑
Z

P (Y | do(X),W).

Similarly, rule 5 conditions on a subset Z ⊂ Y to obtain the following formula:

P (Y \ Z |do(X),Z,W) =
P (Y |do(X),W)∑

Y\Z P (Y | do(X),W)
.

Rules 6+ and 6− perform multiplication using the chain rule of probability which requires
two known distributions. When rule 6+ is applied, the distribution P (Y |do(X),W) is
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Rule Validity condition Termination condition
1+ Z ∩ (Y ∪X ∪W) = ∅
1− Z ⊆W W = ∅
2+ Z ⊆W W = ∅
2− Z ⊆ X X = ∅
3+ Z ∩ (Y ∪X ∪W) = ∅
3− Z ⊆ X X = ∅
4 Z ⊂ Y |Y| = 1
5 Z ⊂ Y |Y| = 1
6+ Z ⊆W W = ∅
6− Z ∩ (Y ∪X ∪W) = ∅

Table 3: The conditions for the enumerated subset Z for applying the rules of Table 2 to a
term P (Y |do(X),W). For rules 6+ and 6−, the conditions specify valid variables
of the second required term.

known and we check whether P (Z | do(X),W \ Z) is known as well. For rule 6−, the roles
of the distributions are reversed. In the case of rule 6+, Z is a subset of W and we obtain

P (Y,Z |do(X),W) = P (Y | do(X),W)P (Z | do(X),W \ Z).

The two version of the chain rule are needed: it may be the case that when expanding
P (Y |do(X),W) with rule 6+ the additional input P (Z |do(X),W \ Z) is only identified
later in the search. Then, P (Y,Z |do(X),W) is identified when rule 6− is applied to
P (Y | do(X),W).

3.2 Improving the Efficacy of the Search

In this section, we present various techniques that improved the efficiency of the search.
These findings are implemented in a search algorithm in Section 3.3.

3.2.1 Term Expansion

Term expansion refers to the process of deriving new distributions from an input distribution
using the rules of Table 2. By term we mean a single identified distribution. A term is
considered expanded if the rules of Table 2 have been applied to it in every possible way
when the term is in the role of the input. Note that an expanded distribution may still take
the role of an additional input when another term is being expanded. Consider the step
of expanding the input term in Table 2 to all possible outputs with any rule. This can be
done by enumerating every non-empty subset Z of V, and applying the rule with regard to
it.

Table 3 outlines the requirements for Z for each rule of the search. Table 3 tells us that
when an observation Z is added using rule 1+, it cannot be contained in any of the sets
Y,X or W since they are already present in the term. Only observations that are present
can be removed, which is why Z has to a subset of W when applying rule 1−. We may skip
the application of this rule if the set of observations is empty for the current term. The
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exchange of observations to experiments using rule 2+ has similar requirements for set Z as
rule 1−. Exchanging experiments to observations using rule 2− works in a similar fashion.
Only experiments that are present can be exchanged which means that Z ⊆ X. This rule
can be skipped if the set of experiments is empty. New experiments are added using rule
3+ with similar requirements as rule 1+. Well-defined subsets for using rule 3− are the
same as for rule 2−. For rules 4 and 5, the only requirement is that Z is a proper subset
of Y. When the chain rule is applied with rule 6+, we require that the variables of the
second product term is observed in the first term. When applied in reverse with rule 6−,
the variables of the second term must not be present in the first term.

3.2.2 Termination Conditions

Additionally, Table 3 lists the termination condition: if it is satisfied by the current term
to be expanded we know that the rule cannot be applied to it. The following simple lemma
shows that when any of the termination conditions hold, no new distributions can be derived
from it using the respective rule, which allows the search to directly proceed to the next
rule.

Lemma 1. Let G be a semi-Markovian graph and let Y,X and W be disjoint subsets of
V. Then all of the following are true:

(i) If W = ∅, then rule 1− of Table 2 cannot be used.

(ii) If W = ∅, then rule 2+ of Table 2 cannot be used.

(iii) If X = ∅, then rule 2− of Table 2 cannot be used.

(iv) If X = ∅, then rule 3− of Table 2 cannot be used.

(v) If |Y| = 1, then rule 4 of Table 2 cannot be used.

(vi) If |Y| = 1, then rule 5 of Table 2 cannot be used.

(vii) If W = ∅, then rule 6+ of Table 2 cannot be used.

Proof. For (i), the set W is empty so the application of rule 1− using any subset Z would
result in P (Y | do(X),W \ Z) = P (Y | do(X),W) which is already identified. For (ii), the
set W is empty so no observation can be exchanged for an action using the second rule of
do-calculus. For (iii), the set X is empty so no action can be exchanged for an observation
using the second rule of do-calculus. For (iv), the set X is empty so the application of rule
3− using any subset Z would result in P (Y | do(X \ Z),W) = P (Y |do(X),W) which is
already identified. For (v) and (vi), the set Y only has a single vertex, so it cannot have
a non-empty subset. For (vii), the set W is empty so no subset Z ⊂ W can exist for the
second input.
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X1 X2
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W
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Figure 2: A graph for the example where all rules of Table 2 are required for identifying
the target quantity.

3.2.3 Rule Necessity

The rule 1 of do-calculus can be omitted as shown by Huang and Valtorta (2006, Lemma
4). Instead of inserting an observation using rule 1, we can insert an intervention and then
exchange it for an observation. Similarly, an observation can be removed by first exchanging
it for an intervention and then deleting the intervention. It follows that rules 1+ and 1−
of Table 2 are unnecessary for the search.

The following example shows that the remaining rules of Table 2 are all necessary. In the
graph of Figure 2, the causal effect P (Y,X1 |do(X2),W ) can be identified from the inputs
P (W |do(X2), Y,X1), P (Y | do(X2), Z1, Z2, X1), P (X1 |do(X2),W ), P (Z2, X2 |do(X1)) and
P (Z1 |do(X1, Y ), X2) when all rules are available, but not when any individual rule is omit-
ted. This can be verified by running the search algorithm presented at the beginning of
Section 3 or the more advanced algorithm of Section 3.3 with each rule turned off individ-
ually.

3.2.4 Early Detection of Non-identifiable Instances

Worst-case performance of the search can be improved by detecting non-identifiable quanti-
ties directly based on the set of inputs before launching the search. The following theorem
provides a sufficient criterion for non-identifiability.

Theorem 1. Let G be a semi-Markovian graph, let Q = P (Y | do(X),W) and let

P = {P (A1 | do(B1),C1), . . . , P (An | do(Bn),Cn)}.

Then Q is not identifiable from P in G if

Y 6⊆
n⋃

i=1

Ai,

Proof. Since Y 6⊆
⋃n

i=1 Ai, there exists a variable Y ′ ∈ Y such that none of the sets
Ai contain it. We construct two models, M1 and M2, such that P 1(Y ′ | do(Pa(Y ′)G)) =
P 1(Y ′) = P 2(Y ′ + c | do(Pa(Y ′)G)) = P 2(Y ′ + c) where c 6= 0 is a constant. For any child
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Vi of Y ′, we define the structural equations so that f2i (Pa(Vi)G \ Y ′, Y ′, Ui) = f1i (Pa(Vi)G \
Y ′, Y ′− c, Ui). For all other variables, the structural equations are the same for the models
M1 and M2. We have that P 1(Y ′ |do(X),W) 6= P 2(Y ′ |do(X),W) while all inputs P are
the same for the models M1 and M2. It follows that P (Y | do(X),W) is not identifiable.

In other words, Theorem 1 can be used to verify that the entire set Y of a target
distribution P (Y | ·) cannot be constructed from the inputs. If this is the case, the target
quantity is not identifiable.

3.2.5 Heuristics

During the search, we always expand one term at a time through the rules and store the
newly identified distributions. In order for the search to perform fast, we need to decide
which branches are the most promising and should therefore be expanded first. We can do
this by defining a proximity function relating the source terms and the target query, and
by always expanding the closest term first. Our suggestion here is motivated by the way
an educated person might apply do-calculus in a manual derivation. Our chosen proximity
function h links the target distribution P t = P (At |do(Bt),Ct) and a source distribution
P s = P (As |do(Bs),Cs) in the following way:

h(P t, P s) = 10|At ∩As|+ 5|Bt ∩Bs|+ 3|Ct ∩Cs| − 2|At \As| − 2|Bt \Bs|
− 2|Bs \Bt| − |Ct \Cs| − |Cs \Ct|.

Each input distribution and terms derived using the search are assigned into a priority
queue, where the priority is determined by the value given by h. Distributions closer to the
target are prioritized over other terms. The weight 10 for the term |At ∩As| indicates that
having the correct response variables is considered as the first priority. Having the correct
intervention is considered as the second priority (weight 5) and having the correct condition
as the third priority (weight 3). The remaining terms in h penalize variables that are in the
target distribution but not in the source distribution or vice versa. Again, variables that
are intervened on are considered to be more important than conditioning variables.

3.3 The Search Algorithm

We take Algorithm 1 as our starting point and compile the results of Section 3.2 into a
new search algorithm called do-search. This algorithm is capable of solving generalized
identifiability problems (row 7 in Table 1) while streamlining the search process through a
heuristic search order and elimination of redundant rules and subsets. The pseudo-code for
do-search is shown in Algorithm 2.

The algorithm begins by checking whether the query can be solved trivially without
performing the search. This can happen if the target Q is a member of the set of inputs or
if Theorem 1 applies. Next, we note that each input distribution in the set P is marked as
unexpanded at the beginning of the search. Distributions in P are expanded one at a time
by applying every rule of Table 2 in every possible way.

The iteration over the unexpanded distributions U proceeds as follows (lines 4–5). Each
input distribution and terms derived from it using the search are assigned into a priority

13



Algorithm 2 do-search

Input: Target Q = P (Y | do(X),W), a semi-Markovian graph G and a set of known
distributions P = {P1, . . . , Pn}.

Output: A formula F for Q in terms of P or NA
1: if Q ∈ P, return Q
2: if target is non-identifiable by Theorem 1, then return NA
3: let U be the set of unexpanded distributions, initially U := P
4: while U 6= ∅, do
5: let P ′ be the unexpanded distribution closest to the target: P ′ = argmax

Pi∈U
h(Q,Pi)

6: let M be the set of rules of Table 2
7: Remove rules 1+ and 1− from M
8: Remove those rules from M where termination criteria of Table 3 hold for P ′

9: let P∗ be the set of all distributions derived from P ′ using the rules in M
10: for each new candidate distribution P ∗ ∈ P∗, do
11: if P ∗ is already in P, then continue
12: if conditions of Table 3 are not satisfied by P ∗, then continue
13: if an additional input is required that is not in P, then continue
14: if d-separation criteria of Table 2 are not satisfied by G, then continue
15: if P ∗ = Q, then
16: Derive a formula F for Q by backtracking.
17: return F
18: Add P ∗ to P, add P ∗ to U
19: Mark P ′ as expanded: remove P ′ from U
20: return NA

queue, where the priority is determined by the value given by the proximity function h.
Distributions closer to the target are expanded first. In the implementation, only the
actual memory addresses of the distribution objects are placed into the queue. The set
P is implemented as a hash table that serves as a container for all input distributions
and those derived from them. Each new distribution is assigned a unique index that also
serves the hash function for this table. The distribution objects contained in the table
are represented uniquely by three integers corresponding to the sets A,B, and C of the
general form P (A | do(B),C). The distribution objects also contain additional auxiliary
information such as which rule was used to derive it, whether it is expanded or not and
from which distribution it was obtained. This information is used to construct the derivation
if the target is found to be identifiable.

Multiple distributions can share the same value of the proximity function h. In the case
that multiple candidates share the maximal value, the one that was derived the earliest
takes precedence. When the unexpanded distribution currently closest to the target is
determined, the rules of Table 2 are applied sequentially for all valid subsets dictated by
Table 3. When rules one, two and three of do-calculus are considered the necessary d-
separation criteria is checked in G (line 14). For the chain rule, the presence of the required
second input is also verified. The reverse lookup is implemented by using another hash
table, where the hash function is based on the unique representation of each distribution
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object. The values contained in the table are the indices of the derived distributions. The
same hash table is also used to verify that we do not derive again distributions that have
been previously found to be identifiable from the inputs.

We construct a set M of applicable rules for each unexpanded distribution P ′ using the
termination criteria of Table 3 (lines 6–8). If all the necessary criteria have been found to
hold for an applicable rule and a subset, the newly derived distribution P ∗ is added to the
set of known distributions and placed into the priority queue as an unexpanded distribution.
When the applicable rules and subsets have been exhausted for the current distribution P ′,
it is marked as expanded and removed from the queue (line 19). If the target distribution
is found at any point (line 15), a formula is returned for it in terms of the original inputs.
Alternatively, we can also continue deriving distributions to obtain different search paths to
the target that can possibly produce different formulas for it. If instead we exhaust the set
of unexpanded distributions by emptying the queue, the target is deemed non-identifiable
by the search (line 20).

We keep track of the rules that were used to derive each new distribution in the search.
This allows us to construct a graph of the derivation where each root node is a member
of the original input set P and their descendants are the distributions derived from them
during the search. Each edge represents a manipulation of the parent node(s) to obtain the
child node. For an identifiable target quantity, the formula F is obtained by backtracking
the chain of manipulations recursively until the roots are reached (line 16). The derivation
of the example in the beginning of Section 3 depicted in Figure 1(c) can be efficiently found
by applying this procedure.

3.4 Soundness and Completeness Properties

We are ready to establish some key theoretical properties of do-search. The first theorem
considers the correctness of the search.

Theorem 2 (Soundness). do-search always terminates: if it returns an expression for the
target Q, it is correct, if it returns NA then Q is not identifiable with respect to the rules of
do-calculus and standard probability manipulations (in Table 2).

Proof. Each new distribution is derived by using only well-defined manipulations as outlined
by Table 3 and by ensuring that the required d-separation criteria hold in G when rules of
do-calculus are concerned. It follows that if the search terminates and returns a formula
for the target distribution, it was reached from the set input distributions through a chain
of valid manipulations. If do-search terminates as a result of Theorem 1, we are done.
Suppose now that Theorem 1 does not apply. By definition, do-search enumerates every
rule of Table 2 for every well-defined subset of Table 3. By Lemma 1, no distributions are
left out by applying the termination criteria of Table 3. We know that if rules 1− and 1+
of Table 3 are omitted, the distributions generated by these rules can be obtained by a
combination of rules 2−, 2+, 3− and 3+. Furthermore, the order in which the distributions
are expanded has no effect, as every possible manipulation is still carried out. The search
will eventually terminate, since distributions that have already been derived are not added
again to the set of unexpanded distributions and there are only finitely many ways to apply
the rules of Table 2.
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The following theorem provides a completeness result in connection to existing identifia-
bility results. Since do-calculus has been shown to be complete with respect to (conditional)
causal effect identifiability, z-identifiability and transportability, it follows that do-search

is complete for these problems as well.

Theorem 3 (Completeness). If do-search returns NA in the settings in rows 1–4 in
Table 1, then the query is non-identifiable.

Proof. Do-calculus has been shown complete in these settings. The rules of probability
calculus encode what is used in the algorithms as can be seen for example from the proofs
of Theorem 7 and Lemmas 4–8 of (Shpitser and Pearl, 2006a).

It is not known whether the rules implemented in do-search are sufficient for other more
general identifiability problems since it is conceivable that some additional rules might exist
that would be required to achieve completeness. One such generalization is the inclusion of
missing data in the causal model, which we present in Section 5. However, if one were to
show that do-calculus (or any other set of rules included in do-search) is complete for some
special case of the generalized identifiability problem, then do-search would be complete
for this problem as well. In the following sections we will use the term “identifiable by
do-search” to refer to causal queries that can be indentified by do-search.

3.5 Simulations

We implemented do-search (Algorithm 2) in C++. Here we report the findings of a sim-
ulation study to assess the running time performance of do-search and the impact of
the improvements outlined in Section 3.2 as well as the search heuristic described in Sec-
tion 3.2.5.

Our synthetic simulation scenario consisted of 1071 semi-Markovian causal graphs of 10
vertices that were generated at random by first generating a random topological order of
the vertices followed by a random lower triangular adjacency matrices for both directed and
bidirected edges. Graphs without a directed path from X to Y were discarded. We sampled
sequentially input distributions of the form P (A |do(B),C) at random by generating dis-
joint subsets such that A is always non-empty. This was continued until the target quantity
P (Y | do(X)) was found to be identifiable by the search. Then for each graph, we recorded
the search times for set of inputs that first resulted in the query to be identified and for
the last set such that the target was non-identifiable. In other words, each graph generates
two simulation instances, one for an identifiable query and one for a non-identifiable query.
This setting directly corresponds to the setting of partially overlapping experimental data
sets discussed in Section 2.2 for which no other algorithmic solutions exist.

To understand the impact of the search heuristic and the various improvements, we com-
pare four different search configurations: the basic do-search without the search heuristic
or improvements1, one that only uses the search heuristic, one that only uses the improve-
ments of Section 3.2 and one that uses them both.

1In this configuration, terms are expanded in the order they were identified; the conditions in Table 3
are not checked.
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Figure 3: Scatter plots of the search times from identifiable instances under different search
configurations compared to the basic do-search without a heuristic or improve-
ments.

Figure 3 shows the search times of the configurations compared to the basic configuration
for identifiable instances. Most importantly, a vast majority of instances (93 %) are solved
faster than the basic configuration when both heuristics and improvements are used. The
average search time with both heuristics and improvements enabled was 32.7 seconds and
75.2 seconds for the basic configuration. The search heuristic provides the greatest benefit
for these instances as can be seen from Figure 3(b). Using a heuristic can also hinder
performance by leading the search astray and by causing additional computational steps
through the evaluation of the proximity function. For example, there is a small number of
instances where the search time is over ten times slower than the basic configuration when
using a heuristic. Fortunately, there are several instances in the opposite direction, where
the heuristic provides over one hundred fold reduction in search time. Curiously, even using
the improvements sometimes results in slower search times. This is most likely due to the
elimination of rule 1 of do-calculus, since it may be the case that the basic search is able to
use this rule to reach the target distribution faster. More importantly, Figure 3(c) shows
that the improvements clearly benefit the search. Furthermore, the benefit tends to increase
as the instances get harder.

Figure 4 shows the search times of the configurations for non-identifiable instances.
Relying only on a search heuristic provides no benefit here, as expected. The improvements
to the search are most valuable for these instances, and in this scenario every non-identifiable
instance was solved faster than baseline using the improvements, and when applied with
the heuristic only three instance were slower than baseline. The average search time with
both heuristic and improvements enabled was 105.2 seconds and 139.7 seconds for the basic
configuration. The almost zero second instances are a result of Theorem 1 when no search
has to be performed in order to determine the instance to be non-identifiable. The benefit
of the improvements tends to increase as the instances get harder also for these instances.

Finally we examined the average run time performance of do-search, with all improve-
ments and heuristics enabled. We replicated the previously described simulation scenario
with the same number of instances (1071) for graphs up to 10 vertices. Figure 5 shows the
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Figure 4: Scatter plots of the search times from non-identifiable instances under different
search configurations compared to the baseline configuration.
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Figure 5: Boxplots of search times for both identifiable and non-identifiable instances in
graphs of n = 4, . . . , 10 vertices. The vertical axis uses a logarithmic scaling.
Instances where the search time was less than 10−5 seconds were omitted for
clarity.

boxplots of search times on a log-scale for graphs of different size, including both identifi-
able and non-identifiable instances. Note that for every graph size there are a number of
easily solvable instances that show up as outliers in this plot. 10-node instances are solved
routinely under 100 seconds. In this plot, the running times increase exponentially with
increasing graph size (or number of variables).

4 New Causal Effect Identification Results

We present a number of results for various identifiability problems to showcase the versatility
of do-search.
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4.1 Multiple Data Sources with Partially Overlapping Variable Sets

Earlier generalizations of the identifiability problem assume nested experiments or entire
distributions with the exception of surrogate outcome identifiability (Tikka and Karvanen,
2018b) which also has its own intricate assumptions regarding the available distributions.
None of these assumptions are needed in do-search and it can be used to solve identifiability
problems from completely arbitrary collections of input distributions.

We showcase identifiability from multiple experimental distributions by two examples.
In the first example we consider identifiability of P (Y1, Y2 |do(X1, X2)) in the graph of
Figure 6(a) from P (V), P (Y1, Y2 | do(X1), Z,W,X2), P (W |do(X1, X2)), P (Z |do(X2)) and
P (Y2 | do(X1), Y1, Z,W,X2). The target quantity is identifiable and do-search produces
the following formula for it

∑
Z

P (Z ′ | do(X2))
∑
W

P (W |do(X1, X2))

∑
Y2

P (Y1, Y2 | do(X1), Z,W,X2)

 ×
P (Y1, Y2 |do(X1), Z,W,X2)∑
Y ′2
P (Y1, Y ′2 | do(X1), Z,W,X2)

)
.

In the second example we consider identifiability of P (Y1, Y2 | do(X1, X2)) in the graph of
Figure 6(b) from P (V), P (Y1 | do(X1), Y2,W,Z,X2), P (X2,W |do(X1)), P (X2 | do(X1,W )),
P (Y2 | do(X1), Z,W,X2), P (Y2 | do(Z), X1,W,X2), and P (Y1, Y2 |do(Z),W,X1, X2). Again,
the target quantity is identifiable and do-search outputs the following formula

∑
W

P (W | do(X1), X2)
∑
X2

P (X2 |do(X1,W ))×

∑
ZP (X2,W,Z |X1)P (Y1, Y2 |do(X1), X2,W,Z)∑

Y ′1 ,Y
′
2 ,Z
P (X2,W,Z |X1)P (Y ′1 , Y

′
2 | do(X1), X2,W,Z)

)
.

This example shows that a heuristic approach can also help us to find shorter formulas. If
we run do-search again without the heuristic in this instance, the output formula is instead

∑
W,Z

P (Z)P (W |X2, X1, Z)
∑
X2

P (X2 |X1, Z)
∑
Y2

P (Y2 |do(X1), X2,W,Z) ×

P (Y1 |do(X1), X2, Y2,W,Z)
P (Y2 |do(X1), X2,W,Z)P (Y1 |do(X1), X2, Y2,W,Z)∑
Y ′2
P (Y ′2 | do(X1), X2,W,Z)P (Y1 |do(X1), X2, Y ′2 ,W,Z)

)
.

4.2 Combining Transportability and Selection Bias

Input distributions that originate from multiple sources while being simultaneously affected
by selection bias can be considered with do-search. This kind of problem cannot be solved
with algorithms RC or TRmz of Table 1. As an example we consider one source domain
and a target domain with two input data sets: a biased distribution P (X,Y, Z |S) from
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Figure 6: Graphs for the examples on identifiability problems combining both observational
and experimental distributions.

X

Z

Y

S T

Figure 7: Graph that contains both selection bias and transportability nodes.

the target domain and an unbiased experimental distribution P (Y,Z | do(X), T ) from the
source domain. We evaluate the query P (Y | do(X)) in the graph of Figure 7 using these
inputs. In the figure transportability node T is depicted as a gray square and selection
bias node S is depicted as an open double circle. The query is identifiable and do-search

outputs the following formula for it

P (Y |do(X)) =
∑
Z

P (Y |do(X), Z, T )
∑
Y ′

P (Z, Y ′ |X,S).

4.3 Recovering from Multiple Sources of Selection Bias

We present an example where bias originates from two sources with two input data sets: a
distribution affected by both biasing mechanisms P (X,Y, Z,W1,W2 |S1, S2) and a distribu-
tion affected only by a single bias source P (Z |S1). We evaluate the query P (Y |do(X)) in
the graph of Figure 8 using the inputs. The query is identifiable and the following formula
is obtained by do-search∑

Z

P (Z |S1)P (Y |X,Z,W1,W2, S1, S2).

5 Extension to Missing Data Problems

The SCM framework can be extended to describe missing data mechanisms. For each
variable Vi that is not fully observed, two special vertices are added to the causal graph.
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Figure 8: Graph where two selection bias nodes are present.

The vertex V ∗i is the observed proxy variable which is linked to the true variable Vi via the
missingness mechanism (Little and Rubin, 1986; Mohan et al., 2013):

V ∗i =

{
Vi, if RVi = 1,

NA, if RVi = 0,
(1)

where NA denotes a missing value and RVi is called the response indicator (of Vi). In other
words, the variable V ∗i that is actually observed matches the true value Vi if it is not missing
(RVi = 1). Figure 10 depicts some examples of graphs containing missing data mechanisms.

The observed vertices of the causal diagram are partitioned into four categories

V = Vo ∪Vm ∪V∗ ∪R,

where Vo is the set of fully observed variables, Vm is the set of partially observed variables,
V∗ is the set of all proxy variables and R is the set of response indicators. Our method is
also capable of processing queries when the causal graph contains missing data mechanisms
where the sets Ai,Bi and Ci of the input distributions are restricted to contain observed
variables in V∗ ∪Vo ∪R. An active response indicator RVi = 1 is denoted by R1

Vi
. Proxy

variables are not explicitly shown in the graphs of this section for clarity.
Determining identifiability is more challenging under missing data. As evidence of this,

even some non-interventional queries require the application of do-calculus (Mohan and
Pearl, 2018). Furthermore, the rules used in the search of Table 2 are no longer sufficient
and deriving the desired quantity necessitates the use of additional rules that stem from the
definition of the proxy variables and the response indicator. Each new partially observed
variable also has a higher impact on computational complexity, since the corresponding
response indicator and proxy variable are always added to the graph as well.

Table 4 extends the set of rules of Table 2 to missing data problems by providing ma-
nipulations related to the missingness mechanism. The missing data column lists extended
requirements for the valid subset if missing data mechanisms are present in the graph.
The following notation is used in the table: Ra is the set of active response indicators for
the current term, Vt denotes the set of partially observed variables corresponding to the
proxy variables present in the current term. and Vp denotes the set of proxy variables
corresponding to the partially observed variables present in the current term. For example,
if the current term is P (Y, Z∗ |X∗), the aforementioned sets would be Vt = {Z,X} and
Vp = {Y ∗}. The sets Zt and Zp are defined accordingly with respect to the set Z.
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Rule Input Additional Input Output Description
1+ P (Y |do(X),W) P (Y |do(X),Z,W) Insertion of observations
1− P (Y |do(X),W) P (Y |do(X),W \ Z) Deletion of observations
2+ P (Y |do(X),W) P (Y |do(X,Z),W \ Z) Obs. to action exchange
2− P (Y |do(X),W) P (Y |do(X \ Z),Z,W) Action to obs. exchange
3+ P (Y |do(X),W) P (Y |do(X,Z),W) Insertion of actions
3− P (Y |do(X),W) P (Y |do(X \ Z),W) Deletion of actions
4 P (Y |do(X),W) P (Y \ Z |do(X),W) Marginalization
5 P (Y |do(X),W) P (Y \ Z |do(X),Z,W) Conditioning
6+ P (Y |do(X),W) P (Z |do(X),W \ Z) P (Y,Z |do(X),W) Chain rule multiplication
6− P (Y |do(X),W) P (Z |do(X),Y,W) P (Y,Z |do(X),W) Chain rule multiplication
7+ P (Y |do(X),W) P (Z |do(X),W) P (Y \ Z |do(X),Z,W) Chain rule conditioning
7− P (Y |do(X),W) P (Y,Z |do(X),W \ Z) P (Z |do(X),W) Chain rule conditioning
8.1 P (Y |do(X),W) P (Y |do(X),W \ Z,Z1) Enable response indicators
8.2 P (Y |do(X),W) P (Y \ Z,Z1 |do(X),W) Enable response indicators
9.1 P (Y |do(X),W,R1

Z) P (Y |do(X),W \ Z∗,Z,R1
Z) Proxy variable exchange

9.2 P (Y |do(X),W,R1
Z) P (Y \ Z∗,Z |do(X),W,R1

Z) Proxy variable exchange
9.3 P (Y,R1

Z |do(X),W) P (Y \ Z∗,Z,R1
Z |do(X),W) Proxy variable exchange

Table 4: Extended set of rules for missing data problems used to manipulate input distribu-
tions. Rules 1±, 2±, 3±, 4, 5 and 6± are the same as in Table 2. For rules 7±, the
additional input has also been identified. The sets Y,X,W and RZ are disjoint.
The roles of the sets Z and RZ depend on the rule being applied.

Rules 7+ and 7− perform conditioning using the chain rule. These rules are necessary
in the case that set Z contains missing data mechanisms that have been enabled and thus
cannot be marginalized over when attempting to use rule 5. The input is then of the
following form, for example in the case of rule 7+:

P (Y,Z | do(X),W) = P (Y,Z′,R′ | do(X),W),

where Z′ does not contain any missing data mechanisms (or is possibly empty), R′ contains
only active missing data mechanisms and Z = Z′ ∪R′.

Rules 8.1 and 8.2 are used to enable response indicators, which then facilitates the use of
rules 9.1, 9.2 and 9.3. These three rules exchange proxy variables to their true counterparts
when the corresponding response indicators are enabled. For example, rule 8.1 can be used
on P (Y,X∗ |RX) to first obtain P (Y,X∗ |R1

X) by enabling RX . Then, rule 9.2 can applied
to this distribution to obtain P (Y,X |R1

X) by exchanging X∗ for X.
Similarly to Table 3, Table 5 outlines the valid subsets Z for applying the extended

rules of Table 4. A major difference to the original validity and termination conditions is
the addition of the missing data condition that outlines the additional requirements that
must be satisfied when missingness mechanisms are present. For the rules that are shared
by Tables 2 and 4, the missing data condition ensures that a true variable and its proxy
counterpart never appear in the same term at the same time. For example, we cannot add
an intervention on X to P (X∗). It also ensures that we do not carry out summation over
enabled response indicators in the case of rules 4 and 5. When applying rules 8.1 or 8.2,
the condition also ensures that we do not attempt to enable a response indicator that is
already enabled. For rules 9.1, 9.2 and 9.3, the conditions guarantees that a proxy can only
be exchanged to a true variable if its corresponding response indicator is enabled in the
term.

22



Rule Validity condition Missing data condition Termination condition
1+ Z ∩ (X ∪Y ∪W) = ∅ Z ∩ (Vt ∪Vp ∪ Zt ∪ Zp) = ∅
1− Z ⊆W W = ∅
2+ Z ⊆W Z ∩V∗ = ∅ W = ∅
2− Z ⊆ X X = ∅
3+ Z ∩ (Y ∪X ∪W) = ∅ Z ∩ (V∗ ∪Vt) = ∅
3− Z ⊆ X X = ∅
4 Z ⊂ Y Z ∩ (Ra ∩Y) = ∅ |Y| = 1
5 Z ⊂ Y (Y \ Z) ∩ (Ra ∩Y) = ∅ |Y| = 1
6+ Z ⊆W W = ∅
6− Z ∩ (Y ∪X ∪W) = ∅ Z ∩ (Vt ∪Vp ∪ Zt ∪ Zp) = ∅
7+ Z ⊂ Y |Y| = 1
7− Z ⊆W W = ∅
8.1 Z ⊆ R ∩W,Z ∩Ra = ∅ R ∩W = ∅
8.2 Z ⊆ R ∩Y,Z ∩Ra = ∅ R ∩Y = ∅
9.1 Z ⊆ V∗ ∩W,RZ ⊆ Ra Ra = ∅
9.2 Z ⊆ V∗ ∩Y,RZ ⊆ Ra Ra = ∅
9.3 Z ⊆ V∗ ∩Y,RZ ⊆ Ra Ra = ∅

Table 5: The conditions for the enumerated subset Z for applying the rules of Table 2 to
a term in the input column. For rules 6± and 7±, the conditions specify valid
variables of the second required term. Validity conditions for rules 1±, 2±, 3±, 4, 5

and 6± are the same as in Table 3.

Additional terminations conditions also apply to the new rules and their correctness is
easily verified.

Lemma 2. Let G be a semi-Markovian graph and let Y,X and W be disjoint subsets of
V. Then all of the following are true:

(i) If W = ∅, then rule 7− of Table 4 cannot be used.

(ii) If R ∩W = ∅ then rule 8.1 of Table 4 cannot be used.

(iii) If R ∩Y = ∅ then rule 8.2 of Table 4 cannot be used.

(iv) If Ra = ∅, then rules 9.1, 9.2 or 9.3 of Table 4 cannot be used.

Proof. For (i), the set W is empty so no subset Z ⊂ W can exist for the second input.
For (ii), and the set R ∩W is empty so no assignment (W ∩ R) = 1 can be performed.
Similarly for (iii), the set R∩Y is empty so no assignment (Y ∩R) = 1 can be performed.
For (iv) the set of active response indicators Ra is empty, so no transformation from proxy
variables to true variables via the missingness mechanism in (1) can be made.

The task of selecting a suitable heuristic becomes more difficult when missing data
are involved with the identifiability problem. The approach of Section 3.2.5 is no longer
directly applicable due to the relation between proxy variables, response indicators and
partially observed variables. The proximity function considersX andX∗ as entirely different
variables despite their connection and does not prefer the inclusion of response indicators.
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If the heuristic is applies as such, the search path will often involve a large number of
manipulations which in turn leads to complicated expressions. For these reasons we do not
apply a heuristic to missing data problems, but expand terms in the order in which they
were identified. The improvements described in Section 3.2 still apply.

It is straightforward to adapt do-search to the new extended set of rules. In the pseudo-
code shown in Algorithm 2, we simply replace all references to Tables 2 and 3 by references
to Tables 4 and Tables 5, respectively. When the validity condition is checked, we also
verify that the missing data condition holds. Lemma 2 guarantees the correctness of the
new termination criteria. Theorem 1 is also valid when the sets Ai are replaced by Ai∪At

i,
since it may be possible to exchange some proxy variable to a true variable that is present
in the set Y of the target P (Y |do(X),W).

5.1 Systematic Analysis of Bivariate Missing Data Problems

We apply do-search using the extended rule set of Table 4 for all identifiability problems
in bivariate missingness graphs. By bivariate missingness graphs we mean semi-Markovian
graphs for two variables, X and Y , and their missingness indicators, RX and RY . Noting
that edges from {RX , RY } to {X,Y } are not allowed, there are 9216 such graphs. We
consider only 6144 graphs of which 3072 have the edge X → Y and 3072 do not have an
edge between X and Y . Graphs with the edge Y → X are obtained from the studied
graphs by swapping the roles of X and Y . The maximum number of edges in a bivariate
missingness graph is 12 (when a bidirected edge is counted as a single edge).

The available theoretical results for missing data problems include a theorem by Mohan
et al. (2013) that gives a sufficient and necessary condition for the identifiability of the
joint distribution P (V) but is restricted to graphs that do not have edges between the
missingness indicators (row 8 of Table 1). In our example, 5120 graphs out of 6144 have
such edges. The algorithm by Shpitser et al. (2015) does not have this restriction but it
is not known if the algorithm is complete (row 9 of Table 1). Similarly, it is not known
if rules of Table 4 are complete for missing data problems or if some additional rules or
tools are needed for identification in general. Differently from the theorem by Mohan et al.
(2013) and the algorithm by Shpitser et al. (2015), do-search can also address missing
data problems where we consider identification of a marginal or conditional distribution.

The queries P (X,Y ), P (X), P (Y ), P (Y |X) and P (Y |do(X)) were evaluated using
do-search in these 6144 graphs with the input distribution P (X∗, Y ∗, RX , RY ). The results
are summarized by Venn diagrams in Figure 9. The results are also available as a data set
bivariate missingness in the R package implementing do-search. Using this data set
we are able to prove some non-identifiability results and find interesting special cases. The
following theorem gives sufficient conditions for non-identifiability in terms of the number
of edges.

Theorem 4. Let K denote the number of edges in a bivariate missingness graph that does
not have edge Y → X. The joint distribution P (X,Y ) is not identifiable by do-search

if K > 5, marginal distribution P (X) is not identifiable by do-search if K > 9, marginal
distribution P (Y ) and conditional distribution P (Y |X) are not identifiable by do-search

if K > 8.

Proof. By direct evaluation in every possible bivariate missingness graph.
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Figure 9: Venn diagrams indicating the number of graphs were different distributions can be
identified do-search. The intersection of P (X) and P (Y |X) shows the number
of graphs were P (X,Y ) can be identified. The total number of possible graphs is
3072 in both cases.

The next result specifies the graph with the largest number of edges where both the
joint distribution of X and Y and the causal effect of X on Y can be identified.

Theorem 5. The graph in Figure 10(a) is the only bivariate missingness graph that (i)
has edge X → Y , (ii) has five edges, and (iii) allows for the identification of P (X,Y ) and
P (Y | do(X)) by do-search.

Proof. By direct evaluation in every possible bivariate missingness graph.

The third result specifies the graph with the largest number of edges where the marginal
distributions are identifiable while the joint distribution and the causal effect of X on Y
are non-identifiable.

Theorem 6. The graph in Figure 10(b) is the only bivariate missingness graph that (i) has
five edges, and (ii) allows for the identification of P (X) and P (Y ), and (iii) does not allow
for the identification of P (X,Y ) or P (Y | do(X)) by do-search. No bivariate missingness
graph that has more than five edges fulfills the conditions (ii) and (iii).

Proof. By direct evaluation in every possible bivariate missingness graph.

Some interesting examples are shown in Figure 10. Graphs (a) and (b) are the unique
graphs that fulfill the conditions specified in Theorems 5 and 6, respectively. Graph (c) is
the smallest graph were marginals P (X) and P (Y ) can be identified but the joint distri-
bution P (X,Y ) or causal effect P (Y |do(X)) cannot be identified by do-search. In graph
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Figure 10: Missingness graphs used as example cases. Proxy variables are omitted for clar-
ity.

(d), P (X), P (Y ), P (X,Y ) and P (Y | do(X)) are not identifiable by do-search but the
conditional distribution P (Y |X) can be identified as follows

P (Y |X) =
P (Y |RY = 1)P (X |Y,RX = 1, RY = 1)∑
Y ′ P (Y ′ |RY = 1)P (X |Y ′, RX = 1, RY = 1)

. (2)

In equation (2), the numerator resembles the joint distribution P (X,Y |RX = 1, RY = 1)
but is different because Y and RX are not independent. The denominator is the marginal of
this pseudo joint distribution. In graph (e), P (X), P (Y ) and P (X,Y ) are not identifiable
by do-search but P (Y |X) and P (Y |do(X)) are identifiable and can be both estimated
with equation (2). In graph (f), P (X,Y ), P (X) and P (Y | do(X)) are not identifiable by
do-search but P (Y ) and P (Y |X) can be identified as follows

P (Y ) =
∑

RX ,X∗

P (Y |X∗, RX , RY = 1)P (RX , X
∗), (3)

P (Y |X) = P (Y |X,RX = 1, RY = 1)

In equation (3), the summation also goes over the cases where X∗ = NA and the distribution
of Y must be estimated also on the condition that X is not observed.

5.2 Causal Inference under Case-control Design

Case-control design (Breslow, 1996) is commonly used in epidemiology to study risk factors
of rare diseases. In the basic setup, a fixed number of disease cases and a fixed number
of controls are selected for the risk factor measurements. When the disease is rare, this
design leads to substantial savings in the sample size compared to simple random sampling.
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(b) Case-control design for the front-door situation.

Figure 11: Missingness graph for the case-control examples.

Figure 11(a) shows the missingness graph for a situation where the inclusion to the study
(indicator RY ) depends on the disease endpoint Y . The risk factors X are measured for the
subset RY = 1 but occasionally the values are missing (indicator RX). It is immediately
seen that neither the causal effect P (Y | do(X)) nor conditional distribution P (Y |X) can
be identified because of the arrow Y → RY . However, if the prevalence of the disease in
population, i.e., the marginal distribution P (Y ), is known, the causal effect P (Y | do(X))
can be identified. The result is provided by do-search

P (Y | do(X)) =
P (Y )P (X |Y,RY = 1, RX = 1)∑
Y ′ P (Y ′)P (X |Y ′, RY = 1, RX = 1)

. (4)

In typical applications response Y is binary but in the non-parametric formula of equa-
tion (4) response can be discrete or continuous.

A more complicated example is shown in Figure 11(b) where the causal effect of risk
factor X on disease endpoint Y fulfills the front-door criterion (Pearl, 1995) with respect
to mediator Z and the data are collected from a case-control design where the selection
depends Y and there is occasional item non-response in X and Z. We observe data
P (Y ∗, X∗, Z∗, RY , RX , RZ) and know the marginal distribution P (Y ) from other sources.
Applying do-search we obtain the result

P (Y | do(X)) =∑
Z

[ ∑
Y ′ P (Y ′)P (X,Z |Y ′, RX = 1, RY = 1, RZ = 1)∑

Z′,Y ′ P (Y ′)P (X,Z ′ |Y ′, RX = 1, RY = 1, RZ = 1)
×

∑
X′

∑
Y ′,Z′

P (Y ′)P (X ′, Z ′ |Y ′, RX = 1, RY = 1, RZ = 1) ×

P (Y )P (X ′, Z |Y,RX = 1, RY = 1, RZ = 1)∑
Y ′ P (Y ′)P (X ′, Z |Y ′, RX = 1, RY = 1, RZ = 1)

)]
.

(5)

Expression (5) follows the general structure of the front-door adjustment

P (Y |do(X)) =
∑
Z

P (Z |X)
∑
X′

P (X ′)P (Y |X ′, Z),
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where

P (Z |X) =

∑
Y ′ P (Y ′)P (X,Z |Y ′, RX = 1, RY = 1, RZ = 1)∑

Z′,Y ′ P (Y ′)P (X,Z ′ |Y ′, RX = 1, RY = 1, RZ = 1)
,

P (X) =
∑
Y ′,Z′

P (Y ′)P (X,Z ′ |Y ′, RX = 1, RY = 1, RZ = 1),

P (Y |X,Z) =
P (Y )P (X,Z |Y,RX = 1, RY = 1, RZ = 1)∑
Y ′ P (Y ′)P (X,Z |Y ′, RX = 1, RY = 1, RZ = 1)

.

Note that P (X,Y, Z) = P (Y )P (X,Z |Y,RX = 1, RY = 1, RZ = 1). In (Karvanen, 2015),
a similar example was studied assuming that X, Z and Y are binary but in expression (5)
there are no such restrictions.

6 Discussion

The presented algorithm, do-search, removes the need for manual application of do-
calculus, which is time-consuming and prone to errors. Systematic analyses such as the
one in Section 5.1 are practically unreachable with manual application of do-calculus. Su-
periority of do-search over a simple forwards breadth-first search was attained through
a combination of a search heuristic and a reduction of the search space. Some further
approaches were attempted but later discarded as non-beneficial. These include caching d-
separation criteria that hold in the graph after they are first evaluated, pre-computing valid
subsets for each subset size and enumerating subsets in an order of increasing cardinality.

As the simulations showed, our intuitive heuristic yielded significant improvements in
search performance. The proximity function defined in Section 3.2.5 uses only the infor-
mation contained in the distributions themselves. One approach could be to also take the
structure of the graph into account in the proximity function. Further study is needed for
finding a heuristic that performs well when missing data mechanisms are present in the
graph.

The scalability of do-search is limited due to vast search space of possibly identified
causal effects. Currently, algorithms with polynomial complexity currently exist only for
the simpler problems (see Table 1). However, based on the simulation results, do-search
solves identifiability problems in graphs of ten vertices in under two minutes on average.
Typically graphs analyzed in literature related to identifiability problems have fewer vertices.
The theoretical computational complexity of the general form of the causal identifiability
problem defined in Section 2 remains an important and interesting question.

The search could also be used to obtain formulas that are in some sense simpler than
those produced by existing identifiability algorithms. A simplification algorithm by Tikka
and Karvanen (2017b) functions as a post-processing step after the identifying formula
has already been obtained by the ID algorithm, but has exponential complexity. Given a
measure of simplicity, the search heuristic could be adjusted to find simple formulas directly
without resorting to separate simplification procedures. In some specific contexts, such as
the standard causal effect identifiability problem, an approach known as pruning (Tikka
and Karvanen, 2018a) could be incorporated into the search. Pruning refers to the removal
of vertices from the graph, that are not required for determining identifiability.
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Finally we note that identifiability has also been studied under the assumption that
the functional relationships depicted by the causal model are linear (Angrist et al., 1996;
van der Zander and Liskiewicz, 2016; Chen et al., 2017) or non-parametric with additive
error terms (Peters et al., 2014; Peña and Bendtsen, 2017) and when the causal graph is
not completely known (Maathuis et al., 2009; Entner et al., 2013; Hyttinen et al., 2015;
Perković et al., 2015; Malinsky and Spirtes, 2017; Jaber et al., 2018). Extending the search
in these directions is an interesting line of future research.

7 Conclusion

We presented do-search: a do-calculus based search capable of solving identifiability prob-
lems for which no known solutions exist. This contribution is especially useful for researchers
working in the field of causal inference to confirm theoretical results or to find counterex-
amples to identifiability claims. In practical terms, the search can also provide solutions to
complicated problems such as combining transportability and selection bias, recovering from
multiple bias sources or identifying causal quantities in the presence of missing data that
cannot be solved by any other existing method. An R package providing an implementation
of do-search is available on CRAN.
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