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Abstract

We describe an R package cts for fitting a modified form of continuous time autore-
gressive model, which can be particularly useful with unequally sampled time series. The
estimation is based on the application of the Kalman filter. The paper provides the meth-
ods and algorithms implemented in the package, including parameter estimation, spectral
analysis, forecasting, model checking and Kalman smoothing. The package contains R
functions which interface underlying Fortran routines. The package is applied to geophys-
ical and medical data for illustration.
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1. Introduction

The discrete time autoregressive model of order p, the AR(p), is a widely used tool for model-
ing equally spaced time series data. It can be fitted in a straightforward and reliable manner
and has the capacity to approximate a second order stationary process to any required de-
gree of precision by choice of a suitably high order. Various information criteria such as
the AIC (Akaike 1974) or the BIC (Schwarz 1978) can, in practice be used to determine a
suitable order when fitting to a finite data set. This model is clearly not appropriate for
irregularly sampled data, for which various authors have advocated the use of the continuous
time autoregressive model of order p, the CAR(p). For example Jones (1981) developed an
estimation method for the CAR(p) fitted to discretely sampled data through the application
of the Kalman filter. However, the CAR(p) model does not share with its discrete coun-
terpart the same capacity to approximate any second order stationary continuous process.
Belcher, Hampton, and Tunnicliffe Wilson (1994) modified the parameterization and struc-
ture of the CAR(p) model in such a way that this general capacity for approximation was
restored, requiring only a relatively minor modification of the estimation procedure of Jones.
More recently, see Tunnicliffe Wilson and Morton (2004), this modified CAR(p) model has
been named the CZAR(p) model and expressed in autoregressive form using the generalized
continuous time shift operator with the alternative parameterization appearing in a natural
manner. Wang, Woodward, and Gray (2009) utilized the methods in Belcher et al. (1994) for
fitting time varying nonstationary models. Since the technical details for the Kalman filter
on CAR models are scattered in the literature, we give a thorough presentation in this paper,
which provides a foundation for the implementations in the R (R Development Core Team
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2013) package cts (Tunnicliffe Wilson and Wang 2013) for fitting CAR models with discrete
data. The cts package contains typical time series applications including spectral estimation,
forecasting, diagnostics, smoothing and signal extraction. The application is focused on un-
equally spaced data although the techniques can be applied to equally spaced data as well.
The paper is organized as follows. Section 2 summarizes the methods from which the cts
package was developed. Section 3 outlines the implementations in the package. Section 4
illustrates the capabilities of cts with two data sets. Finally, Section 5 concludes the paper.

2. Methods

2.1. The CAR and CZAR model

Suppose we have data xp observed on time t; for £k = 1,2,...,n. We assume noise-affected
observations x = y(tx) + nr and y(tx) follows a p-th order continuous time autoregressive
process Y (1) satisfying

Y1)+ a YP D) 4+ 4 ap 1 YV () + 0,V (1) = €(2), (1)

where Y () (t) is the ith derivative of Y (¢) and €(t) is the formal derivative of a Brownian
process B(t) with variance parameter o2 = var{B(t + 1) — B(t)}. In addition, it will be
assumed that 7 is a normally distributed random variable representing observational error,
uncorrelated with €(t), and E(ny) = 0; E(njn) = 0,for j # k; E(n}) = yo>.

The operator notation of model (1) is a(D)Y (t) = €(t) where

a(D) = DP + oy DP7' + ...+, 1D + oy, (2)

where D is the derivative operator. The corresponding characteristic equation is then given
by
a(s) =8P +arsP 4 ap1s o =0. (3)

To assure the stability of the model, a parameterization was constructed on the zeros 71, ..., 7,
of a(s) (Jones 1981), i.e.,

a(s) = [[(s —r)- (4)

i=1

The model in the cts package follows the modified structure (Belcher et al. 1994):
a(D)Y (t) = (1+ D/r)P~"e(t), (5)

with scaling parameter x > 0. This introduces a prescribed moving average operator of
order p — 1 into the model, which makes the model selection convenient along with other
theoretic benefits described in Belcher et al. (1994). In practice model (5) has been found
to fit data quite well without the need for an observation error term (Belcher et al. 1994).
Indeed, for large orders p, the observation error variance may become confounded with the
parameters of model (5), thus leading to some difficulty in estimation (Belcher et al. 1994).
As argued by these authors, model 5 can be sufficient unless there is a substantial variability
for measurements at the same or very nearly coincident times.
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The power spectrum of the pth order continuous process (5) is defined by

(1+i2mf/k)P~1 |

a(i2rf)

This may also be expressed in a form which defines the alternative set of parameters ¢1, ..., ¢},
by using a transformation g = arctan(27f/k)/m of the frequency f:

p(—1)
p{exp(2mig)}

Gy (f) = 2m0”

(6)

o2 |22 2

K2+ (27 f)?

Gy(f) =

Y

where
d(2) =1+ P12+ ... + pp2P.

The link between the o and ¢ parameters is given in Belcher et al. (1994) (9) and the line
which follows. The new parameter space is identical to that of the stationary discrete time
autoregressive model. The CZAR model of Tunnicliffe Wilson and Morton is identical except
that the right-hand side of (5) is modified to (k+ D)P~e(t) so that 02 /k*~2 is re-scaled to o2,
The system frequencies are determined by the roots of (4). In fact, the representation of (4)
breaks a pth order autoregressive operator into its irreducible linear and quadratic factors that
have complex zeros. A quadratic factor (s — rog_1)(s — ror) with complex zeros is associated
with a component of the data having the nature of a stochastic cycle, with approximate
frequency given by f = %ﬁ‘“)', where |J(rgx)| is the absolute value of the imaginary part of
ror. This will be reflected as a component of the autocorrelations with the same frequency,
decaying in amplitude with a rate equal to the absolute value of the real part of the same
zero. The model can represent a strong cycle in the data if this decay rate is very low. A
linear factor with zero at rj is associated with a component of the data having the nature of
a first order autoregression with autocorrelation function exponentially decaying at the rate
rg. If vy is very large, this can give the appearance of a white noise component.

2.2. Kalman filtering

This section deals with the details related to applying the Kalman filter to estimate the
parameters of model (5), following Jones (1981) and Belcher et al. (1994). To apply the
Kalman filter, it is required to rewrite model (5) to a state space form, which may be found in
Wiberg (1971). Let the unobservable state vector 0(t) = (z(t), 2/(t), 2" (t)..., 22~ D (t))T and
0’ the first derivative of 6(¢). The state equation is then given by

0 = A0 + Re, (7)
where ) )
0 1 0
0 0 0
A= (8)
0 0 1
| —CQp —Op-1 —Q1
and
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The observation equation is given by

where the elements of the 1 x p vector H are given by

1 ‘
H = <7? 1>//£21 i=1,00p. (11)
Z_

Suppose that A can be diagonalized by A = UDU !, where

1 1 ... 1
1 T2 N Tp
2 2 2
U — ’rl 7"2 “ e ’rp , (12)
p—1 p—1 p—1
L1 Lp) T ]

1,72, ..., Tp are the roots of a(s), and D is a diagonal matrix with these roots as its diagonal
elements. In this case, we let § = U1, and the state equation becomes

W =Dy + Je, (13)
where J = U~'R. Consequently, the observation equation becomes

r = GY(te) + mk (14)

where G = HU. The necessary and sufficient condition for the diagonalization of A is that
A has distinct eigenvalues. The diagonal form not only provides computational efficiency,
but also provides an interpretation of unobserved components. The evaluation of Ty ;, = e Ak
(standard form) is required where 0 = tj — tx_1. For a review of computations related to
the exponential of a matrix, see Moler and Loan (2003). For the diagonal form, Ty j, = Dok
is diagonal with elements e¢”:%. When a diagonal form is not available, a numerical matrix
exponential evaluation is needed.

To start the Kalman filter recursions, initial conditions are in demand. For a stationary model,
the unconditional covariance matrix of state vector 6(t) is known (Doob 1953) and used in
Jones (1981) and Harvey (1990, §9.1). The initial state for both standard and diagonalized
version can be set as §p = 0 and g = 0, respectively. The stationary covariance matrix ¢
satisfies

Q= 0'2/ A RRTeA 5 ds. (15)
0
When A can be diagonalized, it is straightforward to show that

Qd)i,j = _UQJijj/(ri + Fj)? (16)

where jj and 7; are complex conjugates of .J; and r;, respectively.

The scale parameter x can be chosen approximately as the reciprocal of the mean time
between observations. The algorithm of Kalman filter for the diagonal form is presented
below. Starting with an initial stationary state vector of ¢y = 1(0|0) = 0 and the initial
stationary state covariance matrix Q) (16), the recursion proceeds as follows:
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1. Predict the state. Let
Ty i = ePo (17)

a diagonal matrix, then
Y(tlti—1) = Ty ptp (tr—1ltk—1). (18)
2. Calculate the covariance matrix of this prediction:
Py(trltr—1) =Ty x(Py(te-1lte—1) — Qu)Tyk + Qu- (19)

3. Predict the observation at time ¢j:

2y (teltr—1) = Go(te|te-1) (20)
4. Calculate the innovation:
valte) = 2y (t) — wy(telter) (21)
and variance
Fy(tr) = GPy(tplty—1)GT +V (22)

5. Update the estimate of the state vector:
Y(trlte) = P(teltr-1) + Py(telte—1)GTE, (tr)vy () (23)
6. Update the covariance matrix:
Py(trlte) = Py(teltr—1) — Py(tlte—1)G " F,  (tr)G Py (tk]tr—1) (24)

2

7. The unknown scale factor o2 can be concentrated out by letting 02 = 1 temporally. -2

log-likelihood is calculated by

log Ly.c = Y _log Fy(tx) + nlog Y v (t)/ Fy(tx) (25)

The log-likelihood function (25) thus can be evaluated by a recursive application of the
Kalman filter, and a nonlinear numerical optimization routine is then used to determine
the parameter estimation. The unknown scale factor can then be estimated by

5= =S w0/ Fult). (26)
t=1

When a diagonal form is not stable, a standard form Kalman filter recursion may be found in
Belcher et al. (1994) or Wang (2004). However the computational load is reduced dramatically
with the diagonal form since matrix D is diagonal.

When the nonlinear optimization is successfully completed, in addition to the maximum
likelihood estimation of the parameters and error variances, the Kalman filter returns the
optimal estimate of the state and the state covariance matrix at the last time point. The
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forecasting of the state, state covariance matrix and observation can be continued into future
desired time points using equations from (17) to (20).

2.3. Model selection

To identify a model order, Belcher et al. (1994) proposed a strategy corresponding to the
reparameterization. Start with a large order model, and obtain the parameter vector ¢ and
its covariance matrix Vy, we then make a Cholesky decomposition such that V¢_1 = L(z)LqT5

where Ly is a lower triangular matrix, and define the vector t4 = LdT)qb and construct the

sequence AICy; = — Zle tiyi + 2d for d = 1,...,p. The index of the minimum value of AIC,
suggests a preferred model order. In addition, if the true model order p is less than the large
value used for model estimation, then for i > p the t-statistics may be treated as normal-
distributed variables, so that the deviation from their true values of 0 will be small. However,
Belcher et al used a 33MHz maths co-processor, and with the speed of present day computers
the best practice is to compute the classical AIC or BIC (Akaike 1974; Schwarz 1978) by
fitting the models of increasing order p to the series. The AIC is defined as nlog SS(p) + 2p
and BIC is defined as nlog SS(p) + plog(p) where SS is the sum of squares function given by
Belcher et al. (1994) equation 15. The AIC and BIC can be easily modified if an additional
mean value of the series is estimated. The package cts has implemented the relevant functions
for model selection and a data example will be illustrated.

2.4. Diagnostics

The assumptions underlying the model (7) and (10) are that the disturbances €(¢) and 7y
are normally distributed and serially independent with constant variances. Based on these
assumptions, the standardized one-step forecast errors

e(ty) = v(ty)/VFty) k=1,...n (27)

are also normally distributed and serially independent with unit variance. Hence, in addition
to inspection of time plot, the QQ-normal plot can be used to visualize the ordered residuals
against their theoretical quantiles. For a white noise sequence, the sample autocorrelations
are approximately independently and normally distributed with zero means and variances
1/n. Note that for a purely random series, the cumulative periodogram should follow along a
line y = 22 where zx is frequency. A standard portmanteau test statistic for serial correlation,
such as the Ljung-Box statistic, can be used as well. The proposed calculation of the scaled
innovation is frequently done in classical discrete-time models. This way a sequence of n
numbers is calculated, and the auto-correlation and discrete-time spectrum of these numbers
are calculated, i.e. the time between observations does not enter these calculations.
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2.5. Kalman smoothing

For a structural time series model, it is often of interest to estimate the unobserved components
at all points in the sample. Estimation of smoothed trend and cyclical components provides
an example. The purpose of smoothing at time ¢ is to find the expected value of the state
vector, conditional on the information made available after time ¢. In this section, a fixed-
interval smoothing algorithm (Harvey 1990, §3.6.2) is implemented with modifications for the
model considered, though a more efficient approach is possible, see the discussion in Durbin
and Koopman (2001, §4.3). Estimating unobserved components relies on the diagonal form
which provides the associated structure with the corresponding roots r1, ...r,. The smoothing
state and covariance matrix are given by

Vs(tltn) = Y(telte) + P (tr) (s (tealtn) — ¥ (trialts)) (28)
Py(trltn) = P(tilte) + P*(te) (Ps(teta|tn) — P(tirr[te)) P*(t) (29)

where
P*(tx) = P(tr|te) Ty i1 P~ (bt [tr) (30)

and Ty py1 = ePltrr2—tet1)  and kaﬂ and P(tg|t;) are complex conjugates. To start the
recursion, the initial values are given by 1s(t,|tn) = ¥(tn|tn) and Ps(t,|tn) = P(tnlt,). The
observed value xy, in the absence of measurement error, is the sum of contributions from the
diagonalized state variables ¥, i.e., xp = Zj Gjvj(ti). Therefore, the original data may be
partitioned, as in Jenkins and Watts (1968, §7.3.5). Any pair of two complex conjugate zeros
of (4) is associated with two corresponding state variables whose combined contribution to x
represents a source of diurnal variation. The real zeros correspond to exponential decay. If a
real zero is very large, this can provide an appearance of white noise component. Hence, the
contributions G1); at every time point can be estimated from all the data using the Kalman
smoother as described above.

3. Implementation

The cts package utilizes the Fortran program developed by the authors of Belcher et al. (1994),
with substantial additional Fortran and R routines. In this process, two Fortran subroutines
in Belcher et al. (1994) have to be substituted since they belong to commercial NAG Fortran
Library, developed by the Numerical Algorithms Group. One subroutine was to compute the
approximate solution of a set of complex linear equations with multiple right-hand sides, using
an Lower-Upper LU factorization with partial pivoting. Another subroutine was to find all
roots of a real polynomial equation, using a variant of Laguerre’s Method. In the cts package,
these subroutines have been replaced by their public available counterparts in the LAPACK
& BLAS Fortran Library. All the Fortran programs were written in double precision.

If a constant term is estimated by the default setting ccv="CTES" in the car function, it
represents the mean p, and the model is formulated in terms of (z — p). In the setting
(ccv="MNCT"), the series is not actually mean corrected, but the sample mean is just used to
estimate p in the above model formulation. Several supporting R functions are available in the
cts package that extract or calculate useful statistics based on the fitted CAR model, such as
model summary, predicted values and model spectrum. In particular, the function car returns
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objects of class car, for which the following methods are available: print, summary, plot,
predict, AIC, tsdiag, spectrum, kalsmo. A detailed description of these functions is
available in the online help files. Here a brief introduction will be given and the usage will be
illustrated in the next section. Specifying trace=TRUE in car_control could trigger annotated
printout of information during the fitting process and major results for the fitted model. The
model fitting results can be graphical displayed with plot function. With argument type
equal to "spec", "pred" and "diag", respectively, a figure can be plotted for spectrum,
predicted values and model diagnostic checking, respectively. Three types of prediction exist:
forecast past the end, forecast last L-step, forecast last L-step update. This can be achieved
by invoking argument fty=1, 2, 3, respectively. For instance, ctrl=car_control(fty=1,
n.ahead=10) can predict 10 steps past the end. Function AIC can generate both t-statistic
and AIC values following section 2.3. Function tsdiag follows section 2.4 to provide model
diagnostic checking. Indeed, this function provides the backbone for function plot with
argument type="diag". Function kalsmo implements the Kalman smoothing described in
section 2.5.

The source version of the cts package is freely available from the Comprehensive R Archive
Network (http://CRAN.R-project.org). The reader can install the package directly from
the R prompt via

R> install.packages("cts")

All analyses presented below are contained in a package vignette. The rendered output of the
analyses is available by the R-command

R> library("cts")
R> vignette("kf", package = "cts")

To reproduce the analyses, one can invoke the R code

R> edit(vignette("kf", package = "cts"))

4. Data examples

Two data examples in Belcher et al. (1994) are used to illustrate the capabilities of cts. A
detailed description of the data can be found in the original paper. Since some analysis here
reproduces the results in Belcher et al. (1994), we also ignore a lengthy discussion for brevity.
These analyses were done using R version 3.0.0.

4.1. Geophysical application

Belcher et al. (1994) analyzed 164 measurements of relative abundance of an oxygen isotope
in an ocean core. These are unequally spaced time points with an average of separation of
2000 years. Unequally spaced tick marks indicate the corresponding irregularly sampled times
in Figure 1.

R> library("cts")
R> data("V22174")
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R> plot(V22174, type = "1", xlab = "Time in kiloyears",
+ ylab = IIII)
R> rug(v22174[, 1], col = "red")
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Figure 1: Oxygen isotope series.

We first fit a model of order 14 to the data, following Belcher et al. (1994). The scale
parameter is chosen to be 0.2 as well. The estimation algorithm converges rather quickly
as demonstrated in the following printout, which shows the sum of squares and the value of
¢14 at each iteration. The results are similar to Table 1 of Belcher et al. (1994), which took
30 minutes on a PC386/387 machine to carry out the computing. These authors expected
that simple improvements to the program’s code could substantially speed up the procedure.
Despite that the current cts package has no intent to accomplish such a task, running the
above car function took only 0.3 second, on an ordinary desktop PC (Intel Core 2 CPU, 1.86
GHz). Such a dramatic efficiency improvement is unlikely driven by software change, but by
hardware advancement in the last 20 years.

R> V22174 .car14 <- car(V22174, scale = 0.2, order = 14)

R> tabl <- cbind(V22174.car14$tnit, V22174.car14$ss, V22174.cari4$bit[,
+ 147)

R> colnames(tabl) <- c("Iteration", "Sum of Squares", "phi_14")

R> print(as.data.frame(round(tabl, 5)), row.names = FALSE,

+ print.gap = 8)
Iteration Sum of Squares phi_14
0 12.92737 0.00000
1 8.32272 -0.16453
2 8.24798 -0.23762
3 8.24156 -0.21668



10 Continuous Time AR Models via Kalman Filter

4 8.24013 -0.23189
5 8.23935 -0.22256
6 8.23899 -0.23043
7 8.23877 -0.22493
8 8.23866 -0.22931
9 8.23859 -0.22613

Following section 2.3, a model selection was conducted with AIC which generates exactly the
same results as Table 2 of Belcher et al. (1994). Accordingly, the first-order value for the
AIC shows the most rapid drop from the base-line of 0. Consequently a large t-value of 3.20
suggests order 7 while the minimum AIC implies order 9. For illustration, a model order 7
was selected as in Belcher et al. (1994).

R> AIC(V22174.car14)

Call:
car(x = V22174, scale = 0.2, order = 14)

Model selection statistics

order t.statistic AIC
1 -8.66 -72.93
2 1.72 -73.89
3 -1.35 -73.72
4 3.56 -84.41
5 3.61 -95.47
6 0.89 -94.27
7 3.20 -102.50
8 2.15 -105.14
9 -2.00 -107.16
10 -0.82 -105.83
11 0.71 -104.34
12 0.04 -102.34
13 -1.91 -103.99
14 -1.92 -105.66

R> V22174 .car7 <- car(V22174, scale = 0.2, order = 7)
R> summary(V22174.car7)

Call:
car(x = V22174, scale = 0.2, order = 7)

Order of model = 7, sigma™2 = 1.37e-09
Estimated coefficients (standard errors):

phi_1 phi_2 phi_3 phi_4 phi_5 phi_6 phi_7
coef -0.501 0.355 0.085 -0.022 0.605 -0.371 0.483
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S.E. 0.108 0.111 0.060 0.071 0.084 0.124 0.112

Estimated mean (standard error):
[1] 0.173
[1] 0.022

Alternatively, the following code illustrates how to conduct model selection via the classical
AIC or BIC by fitting the models of increasing order p to the series. Indeed, the model with
order p = 7 is the second best model selected by the AIC and the best model by the BIC.

R> norder <- 14
R> V22174.aic <- V22174.bic <- rep(NA, norder)
R> for (i in 1:norder) {

+ fit <- car(V22174, scale = 0.2, order = i)
+ V22174.aic[i] <- fit$aic
+ V22174.bic[i] <- fit$bic
+ F
R> res <- data.frame(order = 1:norder, AIC = V22174.aic,
+ BIC = V22174.bic)
R> print(res, row.names = FALSE, print.gap = 8)
order AIC BIC
1 395.8212 402.0210
2 395.4665 404.7661
3 397.1475 409.5470
4 395.2427 410.7420
5 380.2526 398.8518
6 381.2466 402.9457
7 371.6226 396.4216
8 373.5190 401.4178
9 374.2532 405.2519
10 375.2333 409.3318
11 376.8200 414.0184
12 378.8153 419.1136
13 362.1151 405.5132
14 375.8480 422.3460

The estimated spectra for both models of order 14 and 7 are displayed on logarithmic (base
10) scale in Figure 2. Both two models indicate three peaks, while for the model of order
14 the resolution is much improved. In spectrum calculation, the default frequency range is
set as from zero to scale parameter x in n.freq=500 intervals. It is convenient to plot the
spectrum for a new range of frequencies with the argument frmult which can be used to
multiply the frequency range.
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R> par(mfrow = c(2, 1))
R> spectrum(V22174.car14)
R> spectrum(V22174.car7)

CAR (14) spectrum

15
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Figure 2: Spectra from fitted models for the oxygen isotope series.



To check model assumptions as described in section 2.4, Figure 3 displays a plot of the stan-
dardized residuals, the ACF of the residuals, cumulative periodogram of the standardized
residuals, and the p-values associated with the Ljung-Box statistic. Visual inspection of the
time plot of the standardized residuals in Figure 3 shows no obvious patterns, although one
outlier extends 3 standard deviations. The ACF of the standardized residuals shows no appar-
ent departure from the model assumptions, i.e., approximately independently and normally
distributed with zero means and variances 1/n at lag > 0. The cumulative periodogram of
standardized residuals follows the line y = 2z reasonably well. The Ljung-Box statistic is not

significant at the lags shown.

R> tsdiag(V22174.car7)

Standardized Residuals
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Figure 3: Model diagnostics for the oxygen isotope series.
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4.2. Medical application

Belcher et al. (1994) analyzed 209 measurements of the lung function of an asthma patient.
The time series is measured mostly at 2 hour time intervals but with irregular gaps, as
demonstrated by the unequal space of tick marks in Figure 4.

R> data("asth")

R> plot(asth, type = "1", xlab = "Time in hours", ylab = "")
R> rug(asth[, 1], col = "red")

£0 40 460 480 500 520 540 560

#MMW_W_MMWMMMMMMMW_MTMW_

o 100 200 300 400 500 600

Time in hours

Figure 4: Measurements of the lung function.

To apply cts, a scale parameter 0.25 was chosen and a model of order 4 was fitted to the data
(Belcher et al. 1994).

R> asth.car4 <- car(asth, scale = 0.25, order = 4, ctrl = car_control(n.ahead = 10))

R> summary(asth.car4)

Call:
car(x = asth, scale = 0.25, order = 4, ctrl = car_control(n.ahead = 10))

Order of model = 4, sigma”2 = 0.779

Estimated coefficients (standard errors):
phi_1 phi_2 phi_3 phi_4

coef 0.093 0.037 0.015 -0.701

S.E. 0.075 0.071 0.077 0.096

Estimated mean (standard error):
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[1] 495.544
[1] 4.524

The log-spectrum (base 10) of the fitted model is shown in Figure 5. The spectral peak
indicates a strong diurnal cycle in the data.

It is possible to fit a model with an observation error term by setting vri=TRUE in the pa-
rameter control statement. The following code shows how to fit such a model. The estimated
observation error variance can be found with the summary command and the corresponding
spectrum in Figure 5 is compared with the model without an observation error.

R> asth.vri <- car(asth, scale = 0.25, order = 4, ctrl = car_control(vri = TRUE))
R> summary(asth.vri)

Call:
car(x = asth, scale = 0.25, order = 4, ctrl = car_control(vri = TRUE))

Order of model = 4, sigma”2 = 0.000158
Observation error variance: 243

Estimated coefficients (standard errors):
phi_1 phi_2 phi_3 phi_4

coef -1.489 1.556 -1.462 0.680

S.E. 0.128 0.130 0.137 0.125

Estimated mean (standard error):
[1] 494.249
[1] 3.128

Nevertheless, we focus on the model fit asth.car4 without the measurement error. Applying
function factab to this model returns one complex zero and two real zeros.

R> factab(asth.car4)

Call:
factab(object = asth.car4)

Characteristic root of original parameterization in alpha

1 2 3 4
-0.016+0.000i -0.020+0.255i -0.020-0.255i -7.246+0.0001

Frequency

1 2 3 4
0.000 0.041 0.041 0.000
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R> par(mfrow = c(2, 1))
R> spectrum(asth.car4)
R> spectrum(asth.vri)

CAR (4) spectrum

10
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frequency
CAR (4) spectrum
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S "]
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5 —
3 9
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Figure 5: Spectra from fitted models without and with an observation error term (top and
bottom panel, respectively), for the lung function measurements.
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R> asth.kalsmo <- kalsmo(asth.car4)
R> par(mfrow = c(3, 1))

R> kalsmoComp(asth.kalsmo, comp = 1, xlab = "Time in hours")
R> kalsmoComp (asth.kalsmo, comp = c(2, 3), xlab = "Time in hours")
R> kalsmoComp (asth.kalsmo, comp = 4, xlab = "Time in hours")
o ]
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Figure 6: Components of the lung function measurements. From top to bottom: trend
component, diurnal component, and approximate white noise component.

We thus decomposed the original time series into three corresponding components via the
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Kalman smoother as shown in Figure 6.

Finally, we predicted the last 10 steps past the end of time series in Figure 7.

R> predict(asth.car4, xlab = "Time in hours")

Call:
car(x = asth, scale = 0.25, order = 4, ctrl = car_control(n.ahead = 10))

1 2 3 4 5 6 7
Time 671.000 672.000 673.000 674.000 675.000 676.000 677.000
Predict 527.692 522.959 516.956 510.116 502.904 495.786 489.208
8 9 10
Time 678.000 679.000 680.000
Predict 483.561 479.165 476.245

00000 0 0 085

10 440 460 480 500 520 540 560

T T T T T T T
o 100 200 300 400 500 600

Time in hours

Figure 7: Forecasts (circles) for lung function measurements.

5. Conclusion

In this article we have outlined the methods and algorithms for fitting continuous time au-
toregressive models through the Kalman filter. The theoretical ingredients of Kalman filter
have their counterparts in the R package cts, which can be particularly useful with unequally
sampled time series data.
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