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Abstract

It is well known that using individual covariate information (such as body weight or
gender) to model heterogeneity in capture–recapture (CR) experiments can greatly en-
hance inferences on the size of a closed population. Since individual covariates are only
observable for captured individuals, complex conditional likelihood methods are usually
required and these do not constitute a standard generalized linear model (GLM) family.
Modern statistical techniques such as generalized additive models (GAMs), which allow
a relaxing of the linearity assumptions on the covariates, are readily available for many
standard GLM families. Fortunately, a natural statistical framework for maximizing con-
ditional likelihoods is available in the Vector GLM and Vector GAM classes of models.
We present several new R-functions (implemented within the VGAM package) specifically
developed to allow the incorporation of individual covariates in the analysis of closed pop-
ulation CR data using a GLM/GAM-like approach and the conditional likelihood. As
a result, a wide variety of practical tools are now readily available in the VGAM object
oriented framework. We discuss and demonstrate their advantages, features and flexibility
using the new VGAM CR functions on several examples.

Keywords: closed population size estimation, conditional likelihood, mark–capture–recapture,
vector generalized additive model, VGAM.

1. Introduction

Note: this vignette is essentially Yee et al. (2015).

Capture–recapture (CR) surveys are widely used in ecology and epidemiology to estimate
population sizes. In essence they are sampling schemes that allow the estimation of both n
and p in a Binomial(n, p) experiment (Huggins and Hwang 2011). The simplest CR sampling
design consists of units or individuals in some population that are captured or tagged across
several sampling occasions, e.g., trapping a nocturnal mammal species on seven consecutive
nights. In these experiments, when an individual is captured for the first time then it is
marked or tagged so that it can be identified upon subsequent recapture. On each occasion
recaptures of individuals which have been previously marked are also noted. Thus each ob-
served individual has a capture history: a vector of 1s and 0s denoting capture/recapture and
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noncapture respectively. The unknown population size is then estimated using the observed
capture histories and any other additional information collected on captured individuals, such
as weight or sex, along with environmental information such as rainfall or temperature.

We consider closed populations, where there are no births, deaths, emigration or immigration
throughout the sampling period (Amstrup et al. 2005). Such an assumption is often reason-
able when the overall time period is relatively short. Otis et al. (1978) provided eight specific
closed population CR models (see also Pollock (1991)), which permit the individual capture
probabilities to depend on time and behavioural response, and be heterogeneous between indi-
viduals. The use of covariate information (or explanatory variables) to explain heterogeneous
capture probabilities in CR experiments has received considerable attention over the last 30
years (Pollock 2002). Population size estimates that ignore this heterogeneity typically result
in biased population estimates (Amstrup et al. 2005). A recent book on CR experiements as
a whole is McCrea and Morgan (2014).

Since individual covariate information (such as gender or body weight) can only be collected on
observed individuals, conditional likelihood models are employed (Pollock et al. 1984; Huggins
1989; Alho 1990; Lebreton et al. 1992). That is, one conditions on the individuals seen at least
once through-out the experiment, hence they allow for individual covariates to be considered
in the analysis. The capture probabilities are typically modelled as logistic functions of the
covariates, and parameters are estimated using maximum likelihood. Importantly, these CR
models are generalized linear models (GLMs; McCullagh and Nelder 1989; Huggins and Hwang
2011).

Here, we maximize the conditional likelihood (or more formally the positive-Bernoulli dis-
tribution) models of Huggins (1989). This approach has become standard practice to carry
out inferences when considering individual covariates, with several different software pack-
ages currently using this methodology, including: MARK (Cooch and White 2012), CARE-2
(Hwang and Chao 2003), and the R packages (R Core Team 2015): mra (McDonald 2012),
RMark (Laake 2013) and Rcapture (Baillargeon and Rivest 2014, 2007), the latter package
uses a log-linear approach, which can be shown to be equivalent to the conditional likelihood
(Cormack 1989; Huggins and Hwang 2011). These programs are quite user friendly, and
specifically, allow modelling capture probabilities as linear functions of the covariates. So an
obvious question is to ask why develop yet another implementation for closed population CR
modelling?

Firstly, nonlinearity arises quite naturally in many ecological applications, (Schluter 1988;
Yee and Mitchell 1991; Crawley 1993; Gimenez et al. 2006; Bolker 2008). In the CR context,
capture probabilities may depend nonlinearly on individual covariates, e.g., mountain pygmy
possums with lighter or heavier body weights may have lower capture probabilities compared
with those having mid-ranged body weights (e.g., Huggins and Hwang 2007; Stoklosa and
Huggins 2012). However, in our experience, the vast majority of CR software does not handle
nonlinearity well in regard to both estimation and in the plotting of the smooth functions.
Since GAMs (Hastie and Tibshirani 1990; Wood 2006) were developed in the mid-1980s they
have become a standard tool for data analysis in regression. The nonlinear relationship
between the response and covariate is flexibly modelled, and few assumptions are made on
the functional relationship. The drawback in applying these models to CR data has been the
difficult programming required to implement the approach.

Secondly, we have found several implementations of conditional likelihood slow, and in some
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instances unreliable and difficult to use. We believe our implementation has superior capa-
bilities, and has good speed and reliability. The results of Section ?? contrast our software
with some others. Moreover, the incorporation of these methods in a general, maintained
statistical package will result in them being updated as the package is updated.

Standard GLM and GAM methodologies are unable to cope with the CR models considered in
this article because they are largely restricted to one linear/additive predictor η. Fortunately
however, a natural extension in the form of the vector generalized linear and additive model
(VGLM/VGAM) classes do allow for multiple ηs. VGAMs and VGLMs are described in Yee
and Wild (1996) and Yee and Hastie (2003). Their implementation in the VGAM package
(Yee 2008, 2010, 2014) has become increasing popular and practical over the last few years,
due to large number of exponential families available for discrete/multinomial response data.
In addition to flexible modelling of both VGLMs and VGAMs, a wide range of useful features
are also available:

• smoothing capabilities;

• model selection using, e.g., AIC or BIC (Burnham and Anderson 1999);

• regression diagnostics and goodness–of–fit tools;

• reduced-rank regression (Yee and Hastie 2003) for dimension reduction;

• computational speed and robustness;

• choice of link functions;

• offsets and prior weights; and

• (specifically) when using R: generic functions based on object oriented programming,
e.g., fitted(), coef(), vcov(), summary(), predict(), AIC(), etc.

Our goal is to provide users with an easy-to-use object-oriented VGAM structure, where four
family-type functions based on the conditional likelihood are available to fit the eight models
of Otis et al. (1978). We aim to give the user additional tools and features, such as those
listed above, to carry out a more informative and broader analysis of CR data; particularly
when considering more than one covariate. Finally, this article primarily focuses on the
technical aspects of the proposed package, and less so on the biological interpretation for CR
experiments. The latter will be presented elsewhere.

An outline of this article is as follows. In Section 2 we present the conditional likelihood for
CR models and a description of the eight Otis et al. (1978) models. Section 3 summarizes
pertinent details of VGLMs and VGAMs. Their connection to the CR models is made in
Section 4. Software details are given in Section 5, and examples on real and simulated data
using the new software are demonstrated in Section 6. Some final remarks are given in Section
7. The two appendices give some technical details relating to the first and second derivatives
of the conditional log-likelihood, and the means.

2. Capture–recapture models
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Symbol Explanation

N (Closed) population size to be estimated
n Total number of distinct individuals caught in the trapping experiment
τ Number of sampling occasions, where τ ≥ 2
yi Vector of capture histories for individual i (i = 1, . . . , n) with observed values

1 (captured) and 0 (noncaptured). Each yi has at least one observed 1
“h” Model M subscript, for heterogeneity
“b” Model M subscript, for behavioural effects
“t” Model M subscript, for temporal effects
pij Probability that individual i is captured at sampling occasion j (j = 1, . . . , τ)
zij = 1 if individual i has been captured before occasion j, else = 0
θ Vector of regression coefficients to be estimated related to pij
η Vector of linear predictors (see Table 3 for further details)
g Link function applied to, e.g., pij . Logit by default

Table 1: Short summary of the notation used for the positive-Bernoulli distribution for
capture–recapture (CR) experiments. Additional details are in the text.

In this section we give an outline for closed population CR models under the conditional
likelihood/GLM approach. For further details we recommend Huggins (1991) and Huggins
and Hwang (2011). The notation of Table 1 is used throughout this article.

2.1. Conditional likelihood

Suppose we have a closed population of N individuals, labelled i = 1, . . . , N and τ capture
occasions labelled j = 1, . . . , τ . We make the usual assumptions that individuals in the
population behave independently of each other, individuals do not lose their tags, and tags
are recorded correctly. Let yij = 1 if the ith individual was caught on the jth occasion and
be zero otherwise, and let n be the number of distinct individuals captured.

Let pij denote the probability of capturing individual i on occasion j. As noted in Section
1, Otis et al. (1978) describe eight models for the capture probabilities, see Section 2.2 for
further details. Label the individuals captured in the experiment by i = 1, . . . , n and those
never captured by i = n+ 1, . . . , N . The full likelihood is given by

Lf = K

N∏
i=1

τ∏
j=1

p
yij
ij (1− pij)1−yij

= K


n∏
i=1

τ∏
j=1

p
yij
ij (1− pij)1−yij

 ·


N∏
i=n+1

τ∏
j=1

(1− pij)

 (1)

where K is independent of the pij but may depend on N . The RHS of (1) requires knowledge
of the uncaptured individuals and in general cannot be computed. Consequently no MLE
of N will be available unless some homogeneity assumption is made about the noncaptured
individuals. Instead, a conditional likelihood function based only on the individuals observed
at least once is

Lc ∝
n∏
i=1

∏τ
j=1 p

yij
ij (1− pij)1−yij

1−
∏τ
s=1(1− p

†
is)

. (2)
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Capture Joint probability

history M0/Mh Mb/Mbh Mt/Mth Mtb/Mtbh

01 (1− p)p (1− pc) pc (1− p1)p2 (1− pc1) pc2
10 p(1− p) pc(1− pr) p1(1− p2) pc1(1− pr2)
11 p2 pc pr p1 p2 pc1 pr2

00 (1− p)2 (1− pc)2 (1− p1)(1− p2) (1− pc1)(1− pc2)

M ≡ dim(η) 1 2 2 (= τ) 3 (= 2τ − 1)

Table 2: Capture history sample space and corresponding probabilities for the eight models
of Otis et al. (1978), with τ = 2 capture occasions in closed population CR experiment. Here,
pcj = capture probability for unmarked individuals at sampling period j, prj = recapture
probability for marked individuals at sampling period j, and p = constant capture probability
across τ = 2. Note that the “00” row is never realized in sample data.

is used. Here p†is are the pij computed as if the individual had not been captured prior to
j so that the denominator is the probability individual i is captured at least once. This
conditional likelihood (2) is a modified version of the likelihood corresponding to a positive-
Bernoulli distribution (Patil 1962).

2.2. The eight models

Models which allow capture probabilities to depend on one or a combination of time, hetero-
geneity or behavioural effects are defined using appropriate subscripts, e.g., Mth depends on
time and heterogeneity. These eight models have a nested structure of whichMtbh is the most
general. The homogeneous model M0 is the simplest (but most unrealistic) and has equal
capture probabilities for each individual H0 : pij = p, regardless of the sampling occasion. All
eight models are GLMs, since the conditional likelihood (2) belongs to the exponential family
(Huggins and Hwang 2011).

To illustrate the approach, we use the following toy example throughout, consider a CR
experiment with two occasions—morning and evening (i.e., τ = 2), with capture probabilities
varying between the two occasions. Furthermore, suppose we have collected some individual
covariates—weight and gender. The joint probabilities of all the eight models are listed in
Table 2. It can be seen that all but the positive-Binomial model (M0/Mh) require more
than one probability and hence more than one linear predictor, so that the original Nelder
and Wedderburn (1972) GLM framework is inadequate. Further, there are two noteworthy
points from Table 2 which apply for any τ ≥ 2:

• first, for Mt-type models, as τ increases so will the number of linear predictors and
hence the potential number of parameters;

• secondly, it is evident that there are four main categories consisting of non-heterogeneity
models (M0, Mb, Mt and Mtb), which are paired with a heterogeneity sub-model
(respectively Mh, Mbh, Mth and Mtbh).

The four heterogeneity models allow for each individual to have their own probability of cap-
ture/recapture. In our toy example, the capture probabilities are dependent on an individual’s
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weight and gender. We discuss these models further in Section 3.1. It is natural to consider
individual covariates such as weight and gender as linear/additive predictors. Let xi denote
a covariate (either continuous or discrete) for the ith individual, which is constant across the
capture occasions j = 1, . . . , τ , e.g., for continuous covariates one could use the first observed
value or the mean across all j. If there are d − 1 covariates, we write xi = (xi1, . . . , xid)

>

with xi1 = 1 if there is an intercept. Also, let g−1(η) = exp(η)/{1 + exp(η)} be the inverse
logit function. Consider model Mtbh, then the capture/recapture probabilities are given as
[notation follows Section 3.3]

p†ij = g−1
(

β∗(j+1)1 + x>i[−1] β1[−1]

)
, j = 1, . . . , τ,

pij = g−1
(
β∗(1)1 + β∗(j+1)1 + x>i[−1] β1[−1]

)
, j = 2, . . . , τ,

where β∗(1)1 is the behavioural effect of prior capture, β∗(j+1)1 for j = 1, . . . , τ are time effects,
and β1[−1] are the remaining regression parameters associated with the covariates. Computa-
tionally, the conditional likelihood (2) is maximized with respect to all the parameters (denote
by θ) by the Fisher scoring algorithm using the derivatives given in Appendix A.

2.3. Estimation of N

In the above linear models, to estimate N let πi(θ) = 1 −
∏τ
s=1(1 − p

†
is) be the probability

that individual i is captured at least once in the course of the study. Then, if θ is known, the
Horvitz–Thompson (HT; Horvitz and Thompson 1952) estimator

N̂(θ) =
n∑
i=1

πi(θ)−1 (3)

is unbiased for the population size N and an associated estimate of the variance of N̂(θ) is
s2(θ) =

∑n
i=1 πi(θ)−2 [1− πi(θ)]. If θ is estimated by θ̂ then one can use

VAR
(
N̂(θ̂)

)
≈ s2(θ̂) + D̂

>
V̂AR(θ̂) D̂ (4)

where, following from a Taylor series expansion of N̂(θ̂) about N̂(θ),

D =
dN(θ)

dθ
=

n∑
i=1

πi(θ)−2
dπi(θ)

dθ

=

n∑
i=1

−1

πi(θ)2

τ∑
s=1

 τ∏
t=1, t6=s

(
1− p†it

) ∂p†is
∂θ

.

3. Vector generalized linear and additive models

To extend the above linear models, we use VGLMs and VGAMs which we briefly describe
in this section. These models fit within a large statistical regression framework which will
be described in Yee (2015). The details here are purposely terse; readers are directed to Yee
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(2008, 2010) for accessible overviews and examples, and Yee and Wild (1996) and Yee and
Hastie (2003) for technical details.

3.1. Basics

Consider observations on independent pairs (xi,yi), i = 1, . . . , n. We use “[−1]” to delete
the first element, e.g., xi[−1] = (xi2, . . . , xid)

>. For simplicity, we will occasionally drop the

subscript i and simply write x = (x1, . . . , xd)
>. Consider a single observation where y is a

Q-dimensional vector. For the CR models of this paper, Q = τ when the response is entered
as a matrix of 0s and 1s. The only exception is for theM0/Mh where the aggregated counts
may be inputted, see Section 5.2. VGLMs are defined through the model for the conditional
density

f(y|x;B) = f(y, η1, . . . , ηM )

for some known function f(·), where B = (β1 β2 · · · βM ) is a d ×M matrix of regression
coefficients to be estimated. We may also write B> = (β(1) β(2) · · · β(d)) so that βj is the
jth column of B and β(k) is the kth row.

The jth linear predictor is then

ηj = β>j x =

d∑
k=1

β(j)k xk, j = 1, . . . ,M, (5)

where β(j)k is the kth component of βj . In the CR context, we remind the reader that, as in
Table 2, we have M = 2 for Mbh, M = τ for Mth and M = 2τ − 1 for Mtbh.

In GLMs the linear predictors are used to model the means. The ηj of VGLMs model the
parameters of a model. In general, for a parameter θj we take

ηj = gj(θj), j = 1, . . . ,M

and we say gj is a parameter link function. Write

ηi =

 η1(xi)
...

ηM (xi)

 = B>xi =

 β>1 xi
...

β>Mxi

 . (6)

In practice we may wish to constrain the effect of a covariate to be the same for some of the
ηj and to have no effect for others. In our toy example, model Mth with τ = M = 2, d = 3,
we have

η1(xi) = β(1)1 + β(1)2 xi2 + β(1)3 xi3,

η2(xi) = β(2)1 + β(2)2 xi2 + β(2)3 xi3,

which correspond to xi2 being the individual’s weight and xi3 an indicator of gender say,
then we have the constraints β(1)2 ≡ β(2)2 and β(1)3 ≡ β(2)3. Then, with “∗” denoting the
parameters that are estimated,

η1(xi) = β∗(1)1 + β∗(1)2 xi2 + β∗(1)3 xi3,

η2(xi) = β∗(2)1 + β∗(1)2 xi2 + β∗(1)3 xi3,
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and we may write

η(xi) =

(
η1(xi)
η2(xi)

)
=

3∑
k=1

β(k) xik

=

(
β(1)1 β(1)2 β(1)3
β(2)1 β(2)2 β(2)3

)xi1xi2
xi3


=

(
β∗(1)1 β∗(1)2 β∗(1)3
β∗(2)1 β∗(1)2 β∗(1)3

)xi1xi2
xi3


=

(
1 0
0 1

)(
β∗(1)1
β∗(2)1

)
xi1 +

(
1
1

)
β∗(1)2 xi2 +

(
1
1

)
β∗(1)3 xi3

=
3∑

k=1

Hk β
∗
(k) xik.

We can also write this as (noting that xi1 = 1)

η(xi) =

(
xi1 0
0 xi1

)(
1 0
0 1

)(
β∗(1)1
β∗(2)1

)
+

(
xi2 0
0 xi2

)(
1
1

)
β∗(1)2 +

(
xi3 0
0 xi3

)(
1
1

)
β∗(1)3

=
3∑

k=1

diag(xik, xik)Hk β
∗
(k).

In general, for VGLMs, we represent the models as

η(xi) =
d∑

k=1

β(k) xik

=
d∑

k=1

Hk β
∗
(k) xik (7)

=
d∑

k=1

diag(xik, . . . , xik)Hk β
∗
(k)

where H1,H2, . . . ,Hd are known constraint matrices of full column-rank (i.e., rank ncol(Hk)),
β∗(k) is a vector containing a possibly reduced set of regression coefficients. Then we may write

B> =
(
H1β

∗
(1) H2β

∗
(2) · · · Hdβ

∗
(d)

)
(8)

as an expression of (6) concentrating on columns rather than rows. Note that with no con-
straints at all, all Hk = IM and β∗(k) = β(k). We need both (6) and (8) since we focus on
the ηj and at other times on the variables xk. The constraint matrices for common models
are pre-programmed in VGAM and can be set up by using arguments such as parallel and
zero found in VGAM family functions. Alternatively, there is the argument constraints

where they may be explicitly inputted. Using constraints is less convenient but provides
the full generality of its power.
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3.2. Handling time-varying covariates

Often, the covariates may be time-varying, e.g., when using temperature as a covariate, then
a different value is observed and measured for each occasion j for j = 1, . . . , τ . Again, using
our toy example with M = 2, d = 3, and τ = 2, suppose we have time-dependent covariates
xij , j = 1, 2. We may have the model

η1(xi1) = β∗(1)1 + β∗(1)2 xi21 + β∗(1)3 xi31,

η2(xi2) = β∗(2)1 + β∗(1)2 xi22 + β∗(1)3 xi32,

for the linear predictor on the two occasions. Here, xikt is for the ith animal, kth explanatory
variable and tth time. We write this model as

η(xij) =

(
xi11 0

0 xi12

)(
1 0
0 1

)(
β∗(1)1
β∗(2)1

)
+

(
xi21 0

0 xi22

)(
1
1

)
β∗(1)2 +

(
xi31 0

0 xi32

)(
1
1

)
β∗(1)3

=
3∑

k=1

diag(xik1, xik2)Hk β
∗
(k).

Thus to handle time-varying covariates one needs the xij facility of VGAM (e.g., see Section
6.3), which allows a covariate to have different values for different ηj through the general
formula

η(xij) =
d∑

k=1

diag(xik1, . . . , xikM )Hk β
∗
(k) =

d∑
k=1

X#
(ik)Hk β

∗
(k) (9)

where xikj is the value of variable xk for unit i for ηj . The derivation of (9), followed by
some examples are given in Yee (2010). Implementing this model requires specification of the
diagonal elements of the matrices X∗ik and we see its use in Section 6.3. Clearly, a model
may include a mix of time-dependent and time-independent covariates. The model is then
specified through the constraint matrices Hk and the covariate matrices X#

(ik). Typically
in CR experiments, the time-varying covariates will be environmental effects. Fitting time-
varying individual covariates requires some interpolation when an individual is not captured
and is beyond the scope of the present work.

3.3. VGAMs

VGAMs replace the linear functions in (7) by smoothers such as splines. Hence, the central
formula is

ηi =
d∑

k=1

Hk f
∗
k(xik) (10)

where f∗k(xk) = (f∗k(1)(xk), . . . , f
∗
k(Mk)

(xk))
> is a vector of Mk smooth functions of xk, where

Mk = ncol(Hk) is the rank of the constraint matrix for xk. Note that standard error bands are
available upon plotting the estimated component functions (details at Yee and Wild (1996)),
e.g., see Figure 1.
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4. VGLMs and VGAMs applied to CR data

In this section we merge the results of Sections 2 and 3 to show how the eight models of Otis
et al. (1978) can be fitted naturally within the VGLM/VGAM framework.

4.1. Linear predictors and constraint matrices

As in Section 3.1, we now write yi as the capture history vector for individual i. Written
technically, yi ∈ ({0, 1})τ\{0τ} so that there is at least one 1 (capture). For simplicity let pc
and pr be the capture and recapture probabilities. Recall that the value for M will depend
on the CR model type and the number of capture occasions considered in the experiment,
for example, consider model Mb as in Table 2, then (η1, η2) = (g(pc), g(pr)) for some link
function g, thus M = 2. The upper half of Table 3 gives these for the eight Otis et al. (1978)
models. The lower half of Table 3 gives the names of the VGAM family function that fits
those models. They work very similarly to the family argument of glm(), e.g.,

R> vglm(cbind(y1, y2, y3, y4, y5, y6) ~ weight + sex + age,

+ family = posbernoulli.t, data = pdata)

is a simple call to fit a Mth model. The response is a matrix containing 0 and 1 values
only, and three individual covariates are used here. The argument name family was chosen
for not necessitating glm() users learning a new argument name; and the concept of error
distributions as for the GLM class does not carry over for VGLMs. Indeed, family denotes
some full-likelihood specified statistical model worth fitting in its own right regardless of an
‘error distribution’ which may not make sense. Each family function has logit() as their
default link, however, alternatives such as probit() and cloglog() are also permissible.
Section 5 discusses the software side of VGAM in detail, and Section 6 gives more examples.

As noted above, constraint matrices are used to simplify complex models, e.g., model Mtbh

into modelMth. The default constraint matrices for theMtbh(τ) model are given in Table 4.
These are easily constructed using the drop.b, parallel.b and parallel.t arguments in the
family function. More generally, the Hk may be inputted using the constraints argument—
see Yee (2008) and Yee (2010) for examples. It can be seen that the building blocks of the
Hk are 1, 0, I and O. This is because one wishes to constrain the effect of xk to be the same
for capture and recapture probabilities. In general, we believe the Hk in conjunction with (9)
can accommodate all linear constraints between the estimated regression coefficients β̂(j)k.

For time-varying covariates models, the M diagonal elements xikj in (9) correspond to the
value of covariate xk at time j for individual i. These are inputted successively in order using
the xij argument, e.g., as in Section 6.3.
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Model η>

M0/Mh g(p)

Mb/Mbh (g(pc), g(pr))

Mt/Mth (g(p1), . . . , g(pτ ))

Mtb/Mtbh (g(pc1), . . . , g(pcτ ), g(pr2), . . . , g(prτ ))

Model family =

M0/Mh posbinomial(omit.constant = TRUE)

posbernoulli.b(drop.b = FALSE ~ 0)

posbernoulli.t(parallel.t = FALSE ~ 0)

posbernoulli.tb(drop.b = FALSE ~ 0, parallel.t = FALSE ~ 0)

Mb/Mbh posbernoulli.b()

posbernoulli.tb(drop.b = FALSE ~ 1, parallel.t = FALSE ~ 0)

Mt/Mth posbernoulli.t()

posbernoulli.tb(drop.b = FALSE ~ 0, parallel.t = FALSE ~ 1)

Mtb/Mtbh posbernoulli.tb()

Table 3: Upper table gives the η for the eight Otis et al. (1978) models. Lower table gives the
relationships between the eight models and function calls. See Table 2 for definitions. The
g = logit link is default for all.

4.2. Penalized likelihood and smoothing parameters

For each covariate xk, the smoothness of each component function f∗(j)k in (10) can be con-

trolled by the non-negative smoothing parameters λ(j)k. Yee and Wild (1994) show that,
when vector splines are used as the smoother, the penalized conditional log-likelihood

`p ≡ log Lp = `c −
1

2

d∑
k=1

ncol(Hk)∑
j=1

λ(j)k

∫ bk

ak

{
f∗
′′

(j)k(t)
}2

dt (11)

is maximized. Here, `c is the logarithm of the conditional likelihood function (2). The
penalized conditional likelihood (11) is a natural extension of the penalty approach described
in Green and Silverman (1994) to models with multiple ηj .

An important practical issue is to control for overfitting and smoothness in the model. The
s() function used within vgam() signifies the smooth functions f∗(j)k estimated by vector
splines, and there is an argument spar for the smoothing parameters, and a relatively small
(positive) value will mean much flexibility and wiggliness. As spar increases the solution
converges to the least squares estimate. More commonly, the argument df is used, and this
is known as the equivalent degrees of freedom (EDF). A value of unity means a linear fit, and
the default is the value 4 which affords a reasonable amount of flexibility.
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parallel.t !parallel.t

parallel.b

(
0τ 1τ
1τ−1 1τ−1

)
,

(
1τ
1τ−1

) (
0τ Iτ
1τ−1 Iτ [−1,]

)
,

(
Iτ
Iτ [−1,]

)

!parallel.b

(
Oτ×(τ−1) 1τ
Iτ−1 1τ−1

)
,

(
1τ
1τ−1

) (
Oτ×(τ−1) Iτ
Iτ−1 Iτ [−1,]

)
,

(
Iτ
Iτ [−1,]

)

Table 4: For the general Mtbh(τ) family posbernoulli.tb(), the constraint matrices cor-
responding to the arguments parallel.t, parallel.b and drop.b. In each cell the LHS
matrix is Hk when drop.b is FALSE for xk. The RHS matrix is when drop.b is TRUE for
xk; it simply deletes the left submatrix of Hk. These Hk should be seen in light of Table 3.
Notes: (i) the default for posbernoulli.tb() is H1 = the LHS matrix of the top-right cell
and Hk = the RHS matrix of the top-left cell; and (ii) Iτ [−1,] = (0τ−1|Iτ−1).

5. Software details for CR models in VGAM

Having presented the conditional likelihood (2) and VGLMs/VGAMs for CR models, we
further discuss the fitting in VGAM. It is assumed that users are somewhat familiar with
modelling in R and using glm() class objects. VGAM, authored by TWY, uses S4 classes. In
order to present the new family functions developed for vglm() and vgam(), some additional
preliminaries for VGAM are given below. Version 0.9-4 or later is assumed, and the latest
prerelease version is available at http://www.stat.auckland.ac.nz/yee/VGAM/prerelease.

In vglm()/vgam(), both M0 and Mh are serviced by family = posbinomial(), i.e., the
positive-binomial family. For models Mb, Mt and Mtb, each of these are serviced by their
corresponding family = posbernoulli.-type functions as in Table 3. Formulas of the form

~ 1 correspond to M0, Mb, Mt and Mtb; otherwise they are Mh, Mbh,Mth and Mtbh.

Below we describe each of the eight models with their VGAM representation and their default
values, we also give additional remarks. All eight models can be fit using posbernoulli.tb(),
it is generally not recommended as it is less efficient in terms of memory requirements and
speed.

5.1. Basic software details

All family functions except posbinomial() should have a n × τ capture history matrix as
the response, preferably with column names. Indicators of the past capture of individual i,
defined as zij , are stored on VGAM objects as the cap.hist1 component in the extra slot.
Also, there is a component called cap1 which indicates on which sampling occasion the first
capture occurred.

As will be illustrated in Section 6.3, a fitted CR object stores the point estimate for the
population size estimator (3), in the extra slot with component name N.hat. Likewise,
its standard error (4) has component name SE.N.hat. By default all the family functions
return fitted values corresponding to the probabilities in the conditional likelihood function
(2), however, Appendix B describes an alternative type of fitted value; the choice is made
by the argument type.fitted, and the fitted values are returned by the fitted() methods

http://www.stat.auckland.ac.nz/ yee/VGAM/prerelease
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function.

Notice that in Table 3, the VGAM family functions have arguments such as parallel.b

which may be assigned a logical or else a formula with a logical as the response. If it is a
single logical then the function may or may not apply that constraint to the intercept. The
formula is the most general and some care must be taken with the intercept term. Here are
some examples of the syntax:

• parallel.b = TRUE ~ x2 means a parallelism assumption is applied to variables x2
and the intercept, since formulas include the intercept by default.

• parallel.b = TRUE ~ x2-1 means a parallelism assumption is applied to variable x2
only.

• parallel.b = FALSE ~ 0 means a parallelism assumption is applied to every variable
including the intercept.

5.2. Models M0/Mh

For M0/Mh, the defaults are given as

R> args(posbinomial)

function (link = "logit", multiple.responses = FALSE, parallel = FALSE,

omit.constant = FALSE, p.small = 1e-04, no.warning = FALSE,

zero = NULL)

NULL

Both models can alternatively be fitted using posbernoulli.t(), posbernoulli.b() and
posbernoulli.tb() by setting the appropriate constrains/arguments (Table 3). For example,
setting posbernoulli.t(parallel.t = FALSE ~ 0) constrains all the pj to be equal.

If comparing all eight models using AIC() or BIC() then setting omit.constant = TRUE

will allow for comparisons to be made with the positive-Bernoulli functions given below.
The reason is that this omits the log-normalizing constant log

(
τ
τy∗i

)
from its conditional log-

likelihood so that it is comparable with the logarithm of (2).

An extreme case for Mh is where pij = pi with pi being parameters in their own right
(Otis et al. 1978). While this could possibly be fitted by creating a covariate of the form
factor(1:n) there would be far too many parameters for comfort. Such an extreme case is
not recommended to avoid over-parameterization.

5.3. Models Mt/Mth

R> args(posbernoulli.t)

function (link = "logit", parallel.t = FALSE ~ 1, iprob = NULL,

p.small = 1e-04, no.warning = FALSE)

NULL
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Note that for Mt, capture probabilities are the same for each individual but may vary with
time, i.e., H0 : pij = pj . One might wish to constrain the probabilities of a subset of sampling
occasions to be equal by forming the appropriate constraint matrices.

Argument iprob is for an optional initial value for the probability, however all VGAM family
functions are self-starting and usually do not need such input.

5.4. Models Mb/Mbh

R> args(posbernoulli.b)

function (link = "logit", drop.b = FALSE ~ 1, type.fitted = c("likelihood.cond",

"mean.uncond"), I2 = FALSE, ipcapture = NULL, iprecapture = NULL,

p.small = 1e-04, no.warning = FALSE)

NULL

Setting drop.b = FALSE ~ 0 assumes there is no behavioural effect and this reduces to
M0/Mh. The default constraint matrices are

H1 =

(
0 1
1 1

)
, H2 = · · · = Hd =

(
1
1

)
so that the first coefficient β∗(1)1 corresponds to the behavioural effect. Section 6.4 illustrates

how the VGLM/VGAM framework can handle short-term and long-term behavioural effects.

5.5. Models Mtb/Mtbh

There are three arguments which determine whether there are behavioural effects and/or time
effects: parallel.b, parallel.t and drop.b. The last two are as above. The defaults are

R> args(posbernoulli.tb)

function (link = "logit", parallel.t = FALSE ~ 1, parallel.b = FALSE ~

0, drop.b = FALSE ~ 1, type.fitted = c("likelihood.cond",

"mean.uncond"), imethod = 1, iprob = NULL, p.small = 1e-04,

no.warning = FALSE, ridge.constant = 0.01, ridge.power = -4)

NULL

One would usually want to keep the behavioural effect to be equal over different sampling
occasions, therefore parallel.b should be normally left to its default. Allowing it to be FALSE
for a covariate xk means an additional τ − 1 parameters, something that is not warranted
unless the data set is very large and/or the behavioural effect varies greatly over time.

Arguments ridge.constant and ridge.power concern the working weight matrices and are
explained in Appendix A.

Finally, we note that using

R> vglm(..., family = posbernoulli.tb(parallel.b = TRUE ~ 0, parallel.t = TRUE ~ 0,

+ drop.b = TRUE ~ 0))

fits the most general model. Its formula is effectively (5) for M = 2τ − 1, hence there are
(2τ − 1)d regression coefficients in total—far too many for most data sets.
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6. Examples

We present several examples using VGAM on both real-life and simulated CR data.

6.1. Deer mice

Our first example uses a well-known data set analyzed in both Huggins (1991) and Amstrup
et al. (2005). The CR data was collected on the deer mouse (Peromyscus maniculatus), a
small rodent native to North America, and about 8 to 10 cm long, not counting the length of
the tail. There were n = 38 individual mice caught over τ = 6 trapping occasions. Individual
body weight, sex and age (young or adult) were also recorded, which we used as covariates to
model heterogeneity. The data are given in the following data frame deermice:

R> head(deermice, 4)

y1 y2 y3 y4 y5 y6 sex age weight

1 1 1 1 1 1 1 0 y 12

2 1 0 0 1 1 1 1 y 15

3 1 1 0 0 1 1 0 y 15

4 1 1 0 1 1 1 0 y 15

Each row represents the capture history followed by the corresponding covariate values for
each observed individual. We compared our results with those given in Huggins (1991),
who reported an analysis which involved fitting all eight model variations. Prior to this we
relabelled the age and sex covariates to match those given in Huggins (1991).

R> deermice <- within(deermice, {

+ age <- 2 - as.numeric(age)

+ sex <- 1 - as.numeric(sex)

+})

Below we demonstrate model fitting for each model in VGAM:

R> M.0 <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ 1,

+ posbernoulli.t(parallel = TRUE ~ 1), data = deermice)

R> M.b <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ 1,

+ posbernoulli.b, data = deermice)

R> M.t <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ 1,

+ posbernoulli.t, data = deermice)

R> M.h <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ weight + sex + age,

+ posbernoulli.t(parallel = TRUE ~ weight + sex + age), data = deermice)

R> M.th <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ weight + sex + age,

+ posbernoulli.t, data = deermice)

R> M.tb <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ 1,

+ posbernoulli.tb, data = deermice)

R> M.bh <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ weight + sex + age,

+ posbernoulli.b, data = deermice)

R> M.tbh <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ weight + sex + age,

+ posbernoulli.tb, data = deermice)
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Notice that parallel = TRUE was used for models M0/Mh. Population size estimates with
standard errors (SE), log-likelihood and AIC values, can all be easily obtained using the
following, for example, consider model Mbh:

R> c(M.bh@extra$N.hat, M.bh@extra$SE.N.hat)

[1] 47.144 7.322

R> c(logLik(M.bh), AIC(M.bh))

[1] -139.5 289.1

We did this for each model, and obtained the following:

R> Table

M.tbh M.bh M.tb M.th M.h M.b M.t M.0

N.hat 47.14 47.14 46.48 39.66 39.85 42.26 38.40 38.47

SE 9.70 7.32 12.64 1.61 1.72 3.75 0.66 0.72

-2ln(L) 274.66 279.08 296.36 279.10 289.74 300.86 304.84 314.54

AIC 294.66 289.09 310.36 297.10 297.75 304.87 316.84 316.54

Based on the AIC, it was concluded that Mbh was superior (although other criteria can also
be considered), yielding the following coefficients (as well as their SEs):

R> round(coef(M.bh), 2)

(Intercept):1 (Intercept):2 weight sex age

1.18 -2.91 0.16 0.92 -1.88

R> round(sqrt(diag(vcov(M.bh))), 2)

(Intercept):1 (Intercept):2 weight sex age

0.41 0.90 0.06 0.35 0.63

which, along with the estimates for the population size, agree with the results of Huggins
(1991). The first coefficient, 1.18, is positive and hence implies a trap-happy effect.

Now to illustrate the utility of fitting VGAMs, we performed some model checking onMbh by
confirming that the component function of weight is indeed linear. To do this, we smoothed
this covariate but did not allow it to be too flexible due to the size of the data set.

R> fit.bh <- vgam(cbind(y1, y2, y3, y4, y5, y6) ~ s(weight, df = 3) + sex + age,

+ posbernoulli.b, data = deermice)

R> plot(fit.bh, se = TRUE, las = 1, lcol = "blue", scol = "orange",

+ rcol = "purple", scale = 5)
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Notice that the s() function was used to smooth over the weight covariate with the equivalent
degrees of freedom set to 3. Plots of the estimated component functions against each covariate
are given in Figure 1. In general, weight does seem to have a (positive) linear effect on the
logit scale. Young deer mice appear more easily caught compared to adults, and gender seems
to have a smaller effect than weight. A more formal test of linearity is

R> summary(fit.bh)

Call:

vgam(formula = cbind(y1, y2, y3, y4, y5, y6) ~ s(weight, df = 3) +

sex + age, family = posbernoulli.b, data = deermice)

Number of linear predictors: 2

Names of linear predictors: logit(pcapture), logit(precapture)

Dispersion Parameter for posbernoulli.b family: 1

Log-likelihood: -137.9 on 69.04 degrees of freedom

Number of iterations: 12

DF for Terms and Approximate Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept):1 1

(Intercept):2 1

s(weight, df = 3) 1 2 3.2 0.194

sex 1

age 1

and not surprisingly, this suggests there is no significant nonlinearity. This is in agreement
with Section 6.1 of Hwang and Huggins (2011) who used kernel smoothing.

Section 6.4 reports a further analysis of the deermice data using a behavioural effect com-
prising of long-term and short-term memory.

6.2. Yellow-bellied Prinia

Our second example also uses a well-known and well-studied data set collected on the Yellow-
bellied Prinia (Prinia flaviventris), a common bird species located in Southeast Asia. A
CR experiment was conducted at the Mai Po Nature Reserve in Hong Kong during 1991,
where captured individuals had their wing lengths measured and fat index recorded. A total
of τ = 19 weekly capture occasions were considered, where n = 151 distinct birds were
captured. In previous studies, models Mh and Mth have both been fitted to these data,
where both wing length and fat index were used as covariates. We focus our attention on the
former model, and considered the posbinomial() function, with some further emphasis on
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Figure 1: Estimated component functions with approximate ±2 pointwise SE bands fitting
a Mbh-VGAM, using the deermice data. The rugplot gives jittered values of each covariate
value xik.

demonstrating smoothing on covariates. The prinia data consists of four columns and rows
corresponding to each observed individual:

R> head(prinia, 4)[, 1:4]

length fat cap noncap

1 1.00650 1 5 14

2 1.26463 1 3 16

3 -0.02598 1 6 13

4 3.07148 0 1 18

The first two columns give the observed covariate values for each individual, followed by
the number of times each individual was captured/not captured respectively (columns 3–4).
Notice that the wing length (length) was standardized here. We considered smoothing over
the wing length, and now plotted the fitted capture probabilities with and without fat content
against wing length present, see Figure 2.
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Figure 2: Capture probability estimates with approximate ±2 pointwise SEs, versus wing
length with (blue) and without (orange) fat content present fitting a Mh-VGAM, using the
prinia data. Notice that the standard errors are wider at the boundaries.

R> M.h.GAM <-

+ vgam(cbind(cap, noncap) ~ s(length, df = 3) + fat,

+ posbinomial(omit.constant = TRUE, parallel = TRUE ~ s(length, df = 3) + fat),

+ data = prinia)

R> M.h.GAM@extra$N.hat

[1] 447.6

R> M.h.GAM@extra$SE.N.hat

[1] 108.9

Both the estimates for the population size and shape of the fitted capture probabilities with
smoothing (Figure 2) matched those in previous studies, e.g., see Figure 1 of Hwang and
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Huggins (2007). Notice that capture probabilities are larger for individuals with fat content
present, also the approximate ±2 pointwise SEs become wider at the boundaries—this feature
is commonly seen in smooths.

6.3. A time-varying covariate example

To illustrate time-varying covariates in the Mth and Mtbh model via the xij argument, we
mimicked the results of Huggins (1989) who fitted the Mtbh model to a small simulated
data set of n = 18 observed individuals and τ = 10 trapping occasions. To help illustrate the
procedure we also fitted modelMth. The true population was N = 20. For the ith individual,
model Mth will be written as (i = 1, . . . , 18, j = 1, . . . , 10)

logit pij = β∗(1)1 + β∗(1)2 · x2i + β∗(1)3 · x3j , (12)

and model Mtbh will be written as (i = 1, . . . , 18, j = 1, . . . , 10)

logit pij = β∗(1)1 zij + β∗(2)1 + β∗(1)2 · x2i + β∗(1)3 · x3j , (13)

where β∗(1)1 in (13) is the behavioural effect, and zij is defined in Table 1. Variable x2 is
an ordinary individual covariate such as weight, as in the previous examples. The variable
x3 is a time-varying or occasion-specific covariate such as temperature or daily rainfall that
is handled using the xij argument described in Section 3.2. Note that the environmental
covariates are involved in the ηj for individuals that have not been and have been previously
captured so that if behavioural response is included in the model (e.g., Mtbh) these must be
repeated to construct the overall model matrix. Also, note that there can be no recaptures on
the first occasion so that the environmental variable for this occasion need not be repeated.
We first examined the data

R> head(Huggins89table1, 4)

x2 y01 y02 y03 y04 y05 y06 y07 y08 y09 y10 t01 t02 t03 t04 t05 t06

1 6.3 0 1 0 1 1 0 0 1 0 0 5.8 2.9 3.7 2.2 3.5 3.6

2 4.0 0 1 1 1 1 0 0 1 0 0 5.8 2.9 3.7 2.2 3.5 3.6

3 4.7 0 1 0 0 1 1 1 1 0 0 5.8 2.9 3.7 2.2 3.5 3.6

4 4.8 0 0 1 1 1 0 1 1 0 0 5.8 2.9 3.7 2.2 3.5 3.6

t07 t08 t09 t10

1 1.9 3 4.8 4.7

2 1.9 3 4.8 4.7

3 1.9 3 4.8 4.7

4 1.9 3 4.8 4.7

The time-varying/occasion-specific covariate variable x3 is represented by variables t01–t10.
As noted above, we need to construct the T02–T10 to model the recapture probabilities
through ηj for j = 11, . . . , 19

R> Hdata <- transform(Huggins89table1, x3.tij = t01,

+ T02 = t02, T03 = t03, T04 = t04, T05 = t05, T06 = t06,

+ T07 = t07, T08 = t08, T09 = t09, T10 = t10)

R> Hdata <- subset(Hdata,

+ y01 + y02 + y03 + y04 + y05 + y06 + y07 + y08 + y09 + y10 > 0)
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The last step deletes the two observations which were never caught, such that n = 18. Thus
model (12) can be fitted by

R> fit.th <-

+ vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2 + x3.tij,

+ xij = list(x3.tij ~ t01 + t02 + t03 + t04 + t05 + t06 + t07 + t08 +

+ t09 + t10 - 1),

+ posbernoulli.t(parallel.t = TRUE ~ x2 + x3.tij),

+ data = Hdata, trace = FALSE,

+ form2 = ~ x2 + x3.tij + t01 + t02 + t03 + t04 + t05 + t06 + t07 + t08 +

+ t09 + t10)

The form2 argument is required if xij is used and it needs to include all the variables in the
model. It is from this formula that a very large model matrix is constructed, from which the
relevant columns are extracted to construct the diagonal matrix in (9) in the specified order
of diagonal elements given by xij. Their names need to be uniquely specified. To check the
constraint matrices we can use

R> constraints(fit.th, matrix = TRUE)

(Intercept) x2 x3.tij

[1,] 1 1 1

[2,] 1 1 1

[3,] 1 1 1

[4,] 1 1 1

[5,] 1 1 1

[6,] 1 1 1

[7,] 1 1 1

[8,] 1 1 1

[9,] 1 1 1

[10,] 1 1 1

Model (13) can be fitted by

R> fit.tbh <-

+ vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2 + x3.tij,

+ xij = list(x3.tij ~ t01 + t02 + t03 + t04 + t05 + t06 +

+ t07 + t08 + t09 + t10 +

+ T02 + T03 + T04 + T05 + T06 +

+ T07 + T08 + T09 + T10 - 1),

+ posbernoulli.tb(parallel.t = TRUE ~ x2 + x3.tij),

+ data = Hdata, trace = FALSE,

+ form2 = ~ x2 + x3.tij +

+ t01 + t02 + t03 + t04 + t05 + t06 + t07 + t08 + t09 + t10 +

+ T02 + T03 + T04 + T05 + T06 + T07 + T08 + T09 + T10)

To compare with model (12) we have
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R> c(logLik(fit.th), AIC(fit.th))

[1] -97.08 200.16

R> c(logLik(fit.tbh), AIC(fit.tbh))

[1] -94.15 196.30

so that the behavioural response model does indeed give a better fit. To check, the constraint
matrices are (cf., Table 4)

R> head(constraints(fit.tbh, matrix = TRUE), 4)

(Intercept):1 (Intercept):2 x2 x3.tij

[1,] 0 1 1 1

[2,] 0 1 1 1

[3,] 0 1 1 1

[4,] 0 1 1 1

R> tail(constraints(fit.tbh, matrix = TRUE), 4)

(Intercept):1 (Intercept):2 x2 x3.tij

[16,] 1 1 1 1

[17,] 1 1 1 1

[18,] 1 1 1 1

[19,] 1 1 1 1

The coefficients β̂∗(j)k and their standard errors are

R> coef(fit.tbh)

(Intercept):1 (Intercept):2 x2 x3.tij

1.0938 -0.6306 0.3845 -0.8369

R> sqrt(diag(vcov(fit.tbh)))

(Intercept):1 (Intercept):2 x2 x3.tij

0.5365 1.3608 0.2229 0.1857

The first coefficient, 1.09, is positive and hence implies a trap-happy effect. The Wald statistic
for the behavioural effect, being 2.04, suggests the effect is real.

Estimates of the population size can be obtained from

R> fit.tbh@extra$N.hat

[1] 20.94
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R> fit.tbh@extra$SE.N.hat

[1] 3.456

This compares with N̂ = 20.86 with a standard error of 4.51 (Huggins 1989).

In closing, we refit model fit.tbh using Select() to illustrate the avoidance of manual
specification of cumbersome formulas and response matrices with many columns. For example,
suppose pdata is a data frame with columns y01, y02, . . . , y30. Then Select(pdata, "y")

will return the matrix cbind(y01, y02, ..., y30) if there are no other variables beginning
with "y".

Starting with Huggins89table1, the following code works quite generally provided the orig-
inal variables are labelled as y01, y02, . . . , and t01, t02, . . . . The code makes a copy of
cbind(t01,...,t10) for the capture probabilities and calls the variables cbind(T01,...,T10)
for the recapture probabilities. Also, Form2 contains more variables than what is needed.

R> Hdata <- subset(Huggins89table1, rowSums(Select(Huggins89table1, "y")) > 0)

R> Hdata.T <- Select(Hdata, "t")

R> colnames(Hdata.T) <- gsub("t", "T", colnames(Hdata.T))

R> Hdata <- data.frame(Hdata, Hdata.T)

R> Hdata <- transform(Hdata, x3.tij = y01)

R> Form2 <- Select(Hdata, prefix = TRUE, as.formula = TRUE)

R> Xij <- Select(Hdata, c("t", "T"), as.formula = TRUE,

+ sort = FALSE, rhs = "0", lhs = "x3.tij", exclude = "T01")

R> fit.tbh <- vglm(Select(Hdata, "y") ~ x2 + x3.tij,

+ form2 = Form2, xij = list(Xij),

+ posbernoulli.tb(parallel.t = TRUE ~ x2 + x3.tij),

+ data = Hdata, trace = FALSE)

R> coef(fit.tbh)

(Intercept):1 (Intercept):2 x2 x3.tij

1.0938 -0.6306 0.3845 -0.8369

Note that this illustrates the ability to enter a matrix response without an explicit cbind(),
e.g., Y <- Select(Hdata, "y") and the invocation vglm(Y ~ · · · ) would work as well. How-
ever, the utility of cbind() encourages the use of column names, which is good style and
avoids potential coding errors.

6.4. Ephemeral and enduring memory

Yang and Chao (2005) consider modelling the behavioural effect with both enduring (long-
term) and ephemeral (short-term) memory components. For example, the short-term compo-
nent depends on whether or not the animal was caught on the most recent sampling occasion.
We call this a lag-1 effect. In the example of this section, which combines aspects of Sections
6.1 and 6.3, we illustrate how this may be easily achieved within the VGLM framework; it
is another case of using the xij argument. We retain the enduring component as with the
Mtbh: H1 contains a column that applies to all the recapture probabilities. For simplicity, we
first consider a lag-1 effect only (as in Yang and Chao (2005)) for the short-term component.
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In the following, we fit aMtbh model to deermice with both long-term and short-term effects:

logit pcs = β∗(2)1 + β∗(1)2 sex + β∗(1)3 weight,

logit prt = β∗(1)1 + β∗(2)1 + β∗(1)2 sex + β∗(1)3 weight + β∗(1)4 yt−1,

where s = 2, . . . , τ , t = 1, . . . , τ and τ = 6.

R> deermice <- transform(deermice, Lag1 = y1)

R> M.tbh.lag1 <-

+ vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight + Lag1,

+ posbernoulli.tb(parallel.t = FALSE ~ 0,

+ parallel.b = FALSE ~ 0,

+ drop.b = FALSE ~ 1),

+ xij = list(Lag1 ~ fill(y1) + fill(y2) + fill(y3) + fill(y4) +

+ fill(y5) + fill(y6) +

+ y1 + y2 + y3 + y4 + y5),

+ form2 = ~ sex + weight + Lag1 +

+ fill(y1) + fill(y2) + fill(y3) + fill(y4) +

+ fill(y5) + fill(y6) +

+ y1 + y2 + y3 + y4 + y5 + y6,

+ data = deermice)

R> coef(M.tbh.lag1)

(Intercept):1 (Intercept):2 sex weight Lag1

1.277693 -1.578218 1.151379 0.005837 0.023058

The coefficient of Lag1, 0.0231, is the estimated ephemeral effect β̂∗(1)4. The estimated endur-

ing effect β̂∗(1)1 has value 1.2777. Note that the fill() function is used to create 6 variables
having 0 values, i.e., 0n.

There is an alternative method to fit the above model; here we set HLag1 = (0>τ ,1
>
τ−1)

>

and the variables fill(y1),. . . ,fill(y6) can be replaced by variables that do not need to
be 0. Importantly, the two methods have X#

(ik)Hk in (9) being the same regardless. The
second alternative method requires constraint matrices to be inputted using the constraints
argument. For example,

R> deermice <- transform(deermice, Lag1 = y1)

R> deermice <- transform(deermice, f1 = y1, f2 = y1, f3 = y1, f4 = y1,

+ f5 = y1, f6 = y1)

R> tau <- 6

R> H2 <- H3 <- cbind(rep(1, 2*tau-1))

R> H4 <- cbind(c(rep(0, tau), rep(1, tau-1)))

R> M.tbh.lag1.method2 <-

+ vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight + Lag1,

+ posbernoulli.tb(parallel.b = TRUE ~ 0, parallel.t = TRUE ~ 0),

+ constraints = list("(Intercept)" = cbind(H4, 1), sex = H2, weight= H3,

+ Lag1 = H4),
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+ xij = list(Lag1 ~ f1 + f2 + f3 + f4 + f5 + f6 +

+ y1 + y2 + y3 + y4 + y5),

+ form2 = Select(deermice, prefix = TRUE, as.formula = TRUE),

+ data = deermice)

R> coef(M.tbh.lag1.method2)

(Intercept):1 (Intercept):2 sex weight Lag1

1.277693 -1.578218 1.151379 0.005837 0.023058

is identical. In closing, it can be noted that more complicated models can be handled. For
example, the use of pmax() to handle lag-2 effects as follows.

R> deermice <- transform(deermice, Lag2 = y1)

R> M.bh.lag2 <-

+ vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight + Lag2,

+ posbernoulli.tb(parallel.t = FALSE ~ 0,

+ parallel.b = FALSE ~ 0,

+ drop.b = FALSE ~ 1),

+ xij = list(Lag2 ~ fill(y1) + fill(y2) + fill(y3) + fill(y4) +

+ fill(y5) + fill(y6) +

+ y1 + pmax(y1, y2) + pmax(y2, y3) + pmax(y3, y4) +

+ pmax(y4, y5)),

+ form2 = ~ sex + weight + Lag2 +

+ fill(y1) + fill(y2) + fill(y3) + fill(y4) +

+ fill(y5) + fill(y6) +

+ y1 + pmax(y1, y2) + pmax(y2, y3) + pmax(y3, y4) +

+ pmax(y4, y5) + y6,

+ data = deermice)

R> coef(M.bh.lag2)

(Intercept):1 (Intercept):2 sex weight Lag2

1.967697 -1.658977 1.217247 0.007467 -0.722266

Models with separate lag-1 and lag-2 effects may also be similarly estimated as above.

7. Discussion

We have presented how the VGLM/VGAM framework naturally handles the conditional-
likelihood and closed population CR models in a GLM-like manner. Recently, Stoklosa
et al. (2011) proposed a partial likelihood approach for heterogeneous models with covariates.
There, the recaptures of the observed individuals were modelled, which yielded a binomial dis-
tribution, and hence a GLM/GAM framework in R is also possible. However, some efficiency
is lost, as any individuals captured only once on the last occasion are excluded. The advantage
of partial likelihood is that the full range of GLM based techniques, which includes more than
GAMs, are readily applicable. Huggins and Hwang (2007); Hwang and Huggins (2011) and
Stoklosa and Huggins (2012) implemented smoothing on covariates for more general models,
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however these methods required implementing sophisticated coding for estimating the model
parameters. Zwane and van der Heijden (2004) also used the VGAM package for smoothing
and CR data, but considered multinomial logit models as an alternative to the conditional
likelihood. We believe the methods here, based on spline smoothing and classical GAM, are
a significant improvement in terms of ease of use, capability and efficiency.

When using any statistical software, the user must take a careful approach when analyzing
and interpreting their output data. In our case, one must be careful when estimating the
population via the HT estimator. Notice that (3) is a sum of the reciprocal of the estimated
capture probabilities seen at least once, π̂i(θ). Hence, for very small π̂i(θ), the population
size estimate may give a large and unrealistic value (this is also apparent when using the
mra package and Rcapture which gives the warning message: The abundance estimation

for this model can be unstable). To avoid this, Stoklosa and Huggins (2012) proposed a
robust HT estimator which places a lower bound on π̂i(θ) to prevent it from giving unrealis-
tically large values. In VGAM, a warning similar to Rcapture is also implemented, and there
are arguments to control how close to 0 “very small” is and to suppress the warning entirely.

There are limitations for Mh-type models, in that they rely on the very strong assumption
that all the heterogeneity is explained by the unit-level covariates. This assumption is often
not true, see, e.g., Rivest and Baillargeon (2014). To this end, a proposal is to add random-
effects to the VGLM class. This would result in the VGLMM class (“M” for mixed) which
would be potentially very useful if developed successfully. Of course, VGLMMs would contain
GLMMs (McCulloch et al. 2008) as a special case. Further future implementations also
include: automatic smoothing parameter selection (via, say, generalized cross validation or
AIC); including a bootstrap procedure as an alternative for standard errors.

GAMs are now a standard statistical tool in the modern data analyst’s toolbox. With the
exception of the above references, CR analysis has since been largely confined to a few re-
gression coefficients (at most), and devoid of any data-driven exploratory analyses involving
graphics. This work has sought to rectify this need by introducing GAM-like analyses using
a unified statistical framework. Furthermore, the functions are easy to use and often can be
invoked by a single line of code. Finally, we believe this work is a substantial improvement
over other existing software for closed population estimation, and we have shown VGAM’s
favourable speed and reliability over other closed population CR R-packages.
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Appendix A: Derivatives

We give the first and (expected) second derivatives of the models. Let zij = 1 if individual
i has been captured before occasion j, else = 0. Also, let pcj and prj be the probability
that an individual is captured/recaptured at sampling occasion j, and Qs:t =

∏t
j=s(1− pcj).

Occasionally, subscripts i are omitted for clarity. Huggins (1989) gives a general form for the
derivatives of the conditional likelihood (2).

For the Mtbh, the score vector is

∂`i
∂pcj

= (1− zij)

[
yij
pcj
− 1− yij

1− pcj

]
−
Q1:τ/(1− pcj)

1−Q1:τ
, j = 1, . . . , τ,

∂`i
∂prj

= zij

[
yij
prj
− 1− yij

1− prj

]
, j = 2, . . . , τ,

and the non-zero elements of the expected information matrix (EIM) can be written

−E

(
∂2`

∂p2cj

)
=

Q1:(j−1)

1−Q1:τ

{
1

pcj
+

1−Q(j+1):τ

1− pcj

}
−
(
∂Q1:τ/∂pcj

1−Q1:τ

)2

=
1

(1− pcj)2(1−Q1:τ )

{
Q1:j

pcj
− Q1:τ

1−Q1:τ

}
,

−E

(
∂2`

∂p2rj

)
=

1−Q1:j/(1− pcj)
prj(1− prj)(1−Q1:τ )

,

−E
(

∂2`

∂pcj ∂pck

)
=

−∂Q1:τ

∂pcj

∂Q1:τ

∂pck
(1−Q1:τ )2

−

∂2Q1:τ

∂pcj ∂pck
(1−Q1:τ )

, j 6= k,

where ∂Q1:τ/∂pcj = −Q1:τ/(1− pcj) and ∂2Q1:τ/(∂pcj ∂pck) = Q1:τ/{(1− pcj)(1− pck)}.
Arguments ridge.constant and ridge.power in posbernoulli.tb() add a ridge parameter
to the first τ EIM diagonal elements, i.e., those for pcj . This ensures that the working weight
matrices are positive-definite, and is needed particularly in the first few iteratively reweighted
least squares iterations. Specifically, at iteration a a positive value ωK × ap is added, where
K and p correspond to the two arguments, and ω is the mean of elements of such working
weight matrices. The ridge factor decays to zero as iterations proceed and plays a negligible
role upon convergence.

For individual i, let y0i be the number of noncaptures before the first capture, yr0i be the
number of noncaptures after the first capture, and yr1i be the number of recaptures after the
first capture. For the Mbh, the score vector is

∂`i
∂pc

=
1

pc
− y0i

1− pc
−
τ(1− pij)τ−1

1−Q1:τ
,

∂`i
∂pr

=
yr1i
pr
− yr0i

1− pc
.
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The non-zero elements of the EIM can be written

−E
(
∂2`

∂p2c

)
=

pc
1−Q1:τ

τ∑
j=1

(1− pc)j−1
(

j − 1

(1− pc)2
+

1

p2c

)
− ∂

∂pc

(
∂Q1:τ/∂pc
1−Q1:τ

)
=

1−Q1:τ − pc[1 + (τ − 1)Q1:τ ]

pc (1− pc)2 (1−Q1:τ )
+

1

p2c
−

τ(τ − 1)
(1− pc)τ−2

1−Q1:τ
+ τ2

(1− pc)τ−2

(1−Q1:τ )2
,

−E
(
∂2`

∂p2r

)
=

1

pr (1− pr) (1−Q1:τ )

τ∑
j=1

{
1− (1− pc)j−1

}
=

τ − (1−Q1:τ )/pc
pr(1− pr)(1−Q1:τ )

.

For the Mth, the score vector is

∂`i
∂pj

=
yij
pij
− 1− yij

1− pij
−
Q1:τ/(1− pij)

1−Q1:τ
, j = 1, . . . , τ,

and the EIM elements are

−E

(
∂2`

∂p2j

)
=

1− pj −Q1:τ

pj (1− pj)2 (1−Q1:τ )2
,

−E
(

∂2`

∂pj ∂pk

)
=

pj pkQ1:τ (1−Q1:τ ) +Q2
1:τ

(1−Q1:τ )2 (1− pj) (1− pk)
, j 6= k.

Appendix B: Fitted values

By default all the family functions have fitted values corresponding to the probabilities in the
conditional likelihood function (2), viz.

p̂
yij
ij (1− p̂ij)1−yij ·

[
1−

τ∏
s=1

(
1− p̂i,cs

)]−1
.

Alternatively, the unconditional means of the Yj can be returned as the fitted values upon
selecting type.fitted = "mean" argument. They are µ1 = E(Y1) = pc1/(1 − Q1:τ ), µ2 =
[(1− pc1) pc2 + pc1 pr2]/(1−Q1:τ ), and for j = 3, 4, . . . , τ ,

µj = (1−Q1:τ )−1
{
pcj Q1:(j−1) + prj

[
pc1 +

j−1∑
s=2

pcsQ1:(s−1)

]}
.
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