
Frequently Asked Questions about Rcpp

Dirk Eddelbuettel Romain François

Rcpp version 0.12.11 as of May 20, 2017

Abstract

This document attempts to answer the most Frequently Asked Questions (FAQ) regarding the Rcpp (Eddelbuettel, François,
Allaire, Ushey, Kou, Russel, Chambers, and Bates, 2017; Eddelbuettel and François, 2011; Eddelbuettel, 2013) package.

Contents
1 Getting started 2

1.1 How do I get started ? . 2
1.2 What do I need ? . 3
1.3 What compiler can I use ? . 3
1.4 What other packages are useful ? . 3
1.5 What licenses can I choose for my code? . 4

2 Compiling and Linking 4
2.1 How do I use Rcpp in my package ? . 4
2.2 How do I quickly prototype my code? . 4

2.2.1 Using inline . 4
2.2.2 Using Rcpp Attributes . 5

2.3 How do I convert my prototyped code to a package ? . 5
2.4 How do I quickly prototype my code in a package? . 5
2.5 But I want to compile my code with R CMD SHLIB ! . 5
2.6 But R CMD SHLIB still does not work ! . 6
2.7 What about LinkingTo ? . 6
2.8 Does Rcpp work on windows ? . 6
2.9 Can I use Rcpp with Visual Studio ? . 6
2.10 I am having problems building Rcpp on OS X, any help ? . 6

2.10.1 Lack of a Compiler . 7
2.10.2 Differing Mac OS X R Versions Leading to Binary Failures . 7
2.10.3 No OpenMP Support . 7
2.10.4 Additional Information / Help . 8

2.11 Does Rcpp work on solaris/suncc ? . 8
2.12 Does Rcpp work with Revolution R ? . 8
2.13 Is it related to CXXR ? . 8
2.14 How do I quickly prototype my code using Attributes? . 8
2.15 What about the new ’no-linking’ feature?? . 8
2.16 I am having problems building RcppArmadillo on OS X, any help ? . 9

2.16.1 Fixed set of gfortran binaries . 9
2.16.2 Pre-existing or latest gfortran binaries . 9

1

3 Examples 9
3.1 Can I use templates with Rcpp ? . 10

3.1.1 Using inline . 10
3.1.2 Using Rcpp Attributes . 10

3.2 Can I do matrix algebra with Rcpp ? . 11
3.2.1 Using inline . 11
3.2.2 Using Rcpp Attributes . 12

3.3 Can I use code from the Rmath header and library with Rcpp ? . 12
3.4 Can I use NA and Inf with Rcpp ? . 13
3.5 Can I easily multiply matrices ? . 13
3.6 How do I write a plugin for inline and/or Rcpp Attributes? . 14
3.7 How can I pass one additional flag to the compiler? . 15
3.8 How can I set matrix row and column names ? . 15
3.9 Why can long long types not be cast correctly? . 16
3.10 What LaTeX packages do I need to typeset the vignettes ? . 17
3.11 Why is there a limit of 20 on some constructors? . 17
3.12 Can I use default function parameters with Rcpp? . 17
3.13 Can I use C++11, C++14, C++17, ... with Rcpp? . 18

4 Support 18
4.1 Is the API documented ? . 18
4.2 Does it really work ? . 18
4.3 Where can I ask further questions ? . 18
4.4 Where can I read old questions and answers ? . 19
4.5 I like it. How can I help ? . 19
4.6 I don’t like it. How can I help ? . 19
4.7 Can I have commercial support for Rcpp ? . 19
4.8 I want to learn quickly. Do you provide training courses ? . 19
4.9 Where is the code repository ? . 19

5 Known Issues 19
5.1 Rcpp changed the (const) object I passed by value . 19
5.2 Issues with implicit conversion from an Rcpp object to a scalar or other Rcpp object 21
5.3 Using operator= with a scalar replaced the object instead of filling element-wise 22
5.4 Long Vector support on Windows . 22
5.5 Sorting with STL on a CharacterVector produces problematic results . 23
5.6 Lexicographic order of string sorting differs due to capitalization . 24

1 Getting started

1.1 How do I get started ?
If you have Rcpp installed, please execute the following command in R to access the introductory vignette (which is a
variant of the Eddelbuettel and François (2011) paper) for a detailed introduction, ideally followed by at least the Rcpp
Attributes (Allaire, Eddelbuettel, and François, 2015) vignette:

> vignette("Rcpp-introduction")

> vignette("Rcpp-attributes")

If you do not have Rcpp installed, these documents should also be available whereever you found this document, i.e.,
on every mirror of CRAN site.

2

1.2 What do I need ?
Obviously, R must be installed. Rcpp provides a C++ API as an extension to the R system. As such, it is bound by the
choices made by R and is also influenced by how R is configured.

In general, the standard environment for building a CRAN package from source (particularly when it contains C or C++
code) is required. This means one needs:

• a development environment with a suitable compiler (see below), header files and required libraries;

• R should be built in a way that permits linking and possibly embedding of R; this is typically ensured by the
-enable-shared-lib option;

• standard development tools such as make etc.

Also see the RStudio documentation on pre-requisites for R package development.

1.3 What compiler can I use ?
On almost all platforms, the GNU Compiler Collection (or gcc, which is also the name of its C language compiler) has to be
used along with the corresponding g++ compiler for the C++ language. A minimal suitable version is a final 4.2.* release;
earlier 4.2.* were lacking some C++ features (and even 4.2.1, still used on OS X as the last gcc release), has issues).

Generally speaking, the default compilers on all the common platforms are suitable.
Specific per-platform notes:

Windows users need the Rtools package from the site maintained by Duncan Murdoch which contains all the required
tools in a single package; complete instructions specific to Windows are in the ‘R Administration’ manual (R Core
Team, 2015a, Appendix D). As of August 2014, it still installs the gcc/g++ 4.6.* compiler which limits the ability to
use modern C++ standards so only s-std=c++0x is supported. R 3.1.0 and above detect this and set appropriate
flags.

OS X users, as noted in the ‘R Administration’ manual (R Core Team, 2015a, Appendix C.4), need to install the Apple
Developer Tools (e.g., Xcode (OS X ≤ 10.8) or Xcode Command Line Tools (OS X ≥ 10.9) (as well as gfortran if R
or Fortran-using packages are to be built); also see FAQ 2.10 and FAQ 2.16 below. Depending on whether on OS X
release before or after Mavericks is used, different additional installation may be needed. Consult the r-sig-mac list
(and its archives) for (current) details.

Linux user need to install the standard developement packages. Some distributions provide helper packages which pull in
all the required packages; the r-base-dev package on Debian and Ubuntu is an example.

The clang and clang++ compilers from the LLVM project can also be used. On Linux, they are inter-operable with gcc

et al. On OS X, they are unfortunately not ABI compatible. The clang++ compiler is interesting as it emits much more
comprehensible error messages than g++ (though g++ 4.8 and 4.9 have caught up).

The Intel icc family has also been used successfully as its output files can also be combined with those from gcc.

1.4 What other packages are useful ?
Additional packages that we have found useful are

inline which is invaluable for direct compilation, linking and loading of short code snippets—but now effectively superseded
by the Rcpp Attributes (see FAQ 2.2.2 and FAQ 2.14) feature provided by Rcpp;

RUnit is used for unit testing; the package is recommended and will be needed to re-run some of our tests but it is not
strictly required during use of Rcpp;

rbenchmark to run simple timing comparisons and benchmarks; it is also recommended but not required.

microbenchmark is an alternative for benchmarking.

devtools can help the process of building, compiling and testing a package but it too is entirely optional.

3

http://www.rstudio.com/ide/docs/packages/prerequisites
https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://developer.apple.com/library/ios/technotes/tn2339/_index.html

1.5 What licenses can I choose for my code?
The Rcpp package is licensed under the terms of the GNU GPL 2 or later, just like R itself. A key goal of the Rcpp package
is to make extending R more seamless. But by linking your code against R (as well as Rcpp), the combination is bound by
the GPL as well. This is very clearly stated at the FSF website:

Linking a GPL covered work statically or dynamically with other modules is making a combined work based
on the GPL covered work. Thus, the terms and conditions of the GNU General Public License cover the whole
combination.

So you are free to license your work under whichever terms you find suitable (provided they are GPL-compatible, see the
FSF site for details). However, the combined work will remain under the terms and conditions of the GNU General Public
License. This restriction comes from both R which is GPL-licensed as well as from Rcpp and whichever other GPL-licensed
components you may be linking against.

2 Compiling and Linking

2.1 How do I use Rcpp in my package ?
Rcpp has been specifically designed to be used by other packages. Making a package that uses Rcpp depends on the same
mechanics that are involved in making any R package that use compiled code — so reading the Writing R Extensions
manual (R Core Team, 2015b) is a required first step.

Further steps, specific to Rcpp, are described in a separate vignette.

> vignette("Rcpp-package")

2.2 How do I quickly prototype my code?
There are two toolchains which can help with this:

• The older one is provided by the inline package and described in Section 2.2.1.

• Starting with Rcpp 0.10.0, the Rcpp Attributes feature (described in Section 2.2.2) offered an even easier alternative
via the function evalCpp, cppFunction and sourceCpp.

The next two subsections show an example each.

2.2.1 Using inline

The inline package (Sklyar, Murdoch, Smith, Eddelbuettel, and François, 2015) provides the functions cfunction and
cxxfunction. Below is a simple function that uses accumulate from the (C++) Standard Template Library to sum the
elements of a numeric vector.

> fx <- cxxfunction(signature(x = "numeric"),

+ 'NumericVector xx(x);

return wrap(std::accumulate(xx.begin(), xx.end(), 0.0));',
+ plugin = "Rcpp")

> res <- fx(seq(1, 10, by=0.5))

> res

[1] 104.5

One might want to use code that lives in a C++ file instead of writing the code in a character string in R. This is easily
achieved by using readLines:

> fx <- cxxfunction(signature(), paste(readLines("myfile.cpp"), collapse="\n"),

+ plugin = "Rcpp")

The verbose argument of cxxfunction is very useful as it shows how inline runs the show.

4

http://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-faq.html#GPLStaticVsDynamic
http://www.gnu.org/licenses/licenses.html
http://www.rdocumentation.org/packages/Rcpp/functions/evalCpp
http://www.rdocumentation.org/packages/Rcpp/functions/cppFunction
http://www.rdocumentation.org/packages/Rcpp/functions/sourceCpp
http://www.rdocumentation.org/packages/inline/functions/cfunction
http://www.rdocumentation.org/packages/inline/functions/cxxfunction
http://www.rdocumentation.org/packages/base/functions/readLines
http://www.rdocumentation.org/packages/inline/functions/cxxfunction

2.2.2 Using Rcpp Attributes

Rcpp Attributes (Allaire et al., 2015), and also discussed in FAQ 2.14 below, permits an even easier route to integrating R
and C++. It provides three key functions. First, evalCpp provide a means to evaluate simple C++ expression which is often
useful for small tests, or to simply check if the toolchain is set up correctly. Second, cppFunction can be used to create
C++ functions for R use on the fly. Third, RcppsourceCpp can integrate entire files in order to define multiple functions.

The example above can now be rewritten as:

> cppFunction('double accu(NumericVector x) {

return(std::accumulate(x.begin(), x.end(), 0.0));

}')
> res <- accu(seq(1, 10, by=0.5))

> res

[1] 104.5

The cppFunction parses the supplied text, extracts the desired function names, creates the required scaffolding,
compiles, links and loads the supplied code and makes it available under the selected identifier.

Similarly, sourceCpp can read in a file and compile, link and load the code therein.

2.3 How do I convert my prototyped code to a package ?
Since release 0.3.5 of inline, one can combine FAQ 2.2.1 and FAQ 2.1. See help("package.skeleton-methods") once
inline is loaded and use the skeleton-generating functionality to transform a prototyped function into the minimal structure
of a package. After that you can proceed with working on the package in the spirit of FAQ 2.1.

Rcpp Attributes (Allaire et al., 2015) also offers a means to convert functions written using Rcpp Attributes into a
function via the compileAttributes function; see the vignette for details.

2.4 How do I quickly prototype my code in a package?
The simplest way may be to work directly with a package. Changes to both the R and C++ code can be compiled and
tested from the command line via:

$ R CMD INSTALL mypkg && Rscript --default-packages=mypkg -e ’someFunction-

ToTickle(3.14)’

This first installs the packages, and then uses the command-line tool Rscript (which ships with R) to load the package,
and execute the R expression following the -e switch. Such an expression can contain multiple statements separated by
semicolons. Rscript is available on all three core operating systems.

On Linux, one can also use r from the littler package by Horner and Eddelbuettel which is an alternative front end
to R designed for both #! (hashbang) scripting and command-line use. It has slightly faster start-up times than Rscript;
and both give a guaranteed clean slate as a new session is created.

The example then becomes

$ R CMD INSTALL mypkg && r -l mypkg -e ’someFunctionToTickle(3.14)’

The -l option calls ’suppressMessages(library(mypkg))’ before executing the R expression. Several packages can be
listed, separated by a comma.

More choice are provide by the devtools package, and by using RStudio. See the respective documentation for details.

2.5 But I want to compile my code with R CMD SHLIB !
The recommended way is to create a package and follow FAQ 2.1. The alternate recommendation is to use inline and
follow FAQ 2.2.1 because it takes care of all the details.

However, some people have shown that they prefer not to follow recommended guidelines and compile their code using
the traditional R CMD SHLIB. To do so, we need to help SHLIB and let it know about the header files that Rcpp provides
and the C++ library the code must link against.

5

http://www.rdocumentation.org/packages/Rcpp/functions/evalCpp
http://www.rdocumentation.org/packages/Rcpp/functions/cppFunction
http://www.rdocumentation.org/packages/Rcpp/functions/cppFunction
http://www.rdocumentation.org/packages/Rcpp/functions/sourceCpp
http://www.rdocumentation.org/packages/Rdoc/functions/compileAttributes
http://www.rdocumentation.org/packages/utils/functions/Rscript
http://www.rdocumentation.org/packages/utils/functions/Rscript
http://www.rdocumentation.org/packages/utils/functions/Rscript

On the Linux command-line, you can do the following:

$ export PKG_LIBS=‘Rscript -e "Rcpp:::LdFlags()"‘ # if Rcpp older than 0.11.0
$ export PKG_CXXFLAGS=‘Rscript -e "Rcpp:::CxxFlags()"‘

$ R CMD SHLIB myfile.cpp

which first defines and exports two relevant environment variables which R CMD SHLIB then relies on. On other operating
systems, appropriate settings may have to be used to define the environment variables.

This approach corresponds to the very earliest ways of building programs and can still be found in some deprecated
documents (as e.g. some of Dirk’s older ’Intro to HPC with R’ tutorial slides). It is still not recommended as there are tools
and automation mechanisms that can do the work for you.

Rcpp versions 0.11.0 or later can do with the definition of PKG_LIBS as a user-facing library is no longer needed (and
hence no longer shipped with the package). One still needs to set PKG_CXXFLAGS to tell R where the Rcpp headers files are
located.

Once R CMD SHLIB has created the dyanmically-loadable file (with extension .so on Linux, .dylib on OS X or .dll
on Windows), it can be loaded in an R session via dyn.load, and the function can be executed via .Call. Needless to say,
we strongly recommend using a package, or at least Rcpp Attributes as either approach takes care of a lot of these tedious
and error-prone manual steps.

2.6 But R CMD SHLIB still does not work !
We have had reports in the past where build failures occurred when users had non-standard code in their ~/.Rprofile or
Rprofile.site (or equivalent) files.

If such code emits text on stdout, the frequent and implicit invocation of Rscript -e "..." (as in FAQ 2.5 above) to
retrieve settings directly from Rcpp will fail.

You may need to uncomment such non-standard code, or protect it by wrapping it inside if (interactive()), or
possibly try to use Rscript -vanilla instead of plain Rscript.

2.7 What about LinkingTo ?
R has only limited support for cross-package linkage.

We now employ the LinkingTo field of the DESCRIPTION file of packages using Rcpp. But this only helps in having R
compute the location of the header files for us.

The actual library location and argument still needs to be provided by the user. How to do so has been shown above,
and we recommned you use either FAQ 2.1 or FAQ 2.2.1 both which use the Rcpp function Rcpp:::LdFlags().

If and when LinkingTo changes and lives up to its name, we will be sure to adapt Rcpp as well.
An important change arrive with Rcpp release 0.11.0 and concern the automatic registration of functions; see Section 2.15

below.

2.8 Does Rcpp work on windows ?
Yes of course. See the Windows binaries provided by CRAN.

2.9 Can I use Rcpp with Visual Studio ?
Not a chance.

And that is not because we are meanies but because R and Visual Studio simply do not get along. As Rcpp is all about
extending R with C++ interfaces, we are bound by the available toolchain. And R simply does not compile with Visual
Studio. Go complain to its vendor if you are still upset.

2.10 I am having problems building Rcpp on OS X, any help ?
There are three known issues regarding Rcpp build problems on OS X. If you are building packages with RcppArmadillo,
there is yet another issue that is addressed separately in FAQ 2.16 below.

6

http://www.rdocumentation.org/packages/base/functions/dyn.load
http://www.rdocumentation.org/packages/base/functions/.Call

2.10.1 Lack of a Compiler

By default, OS X does not ship with an active compiler. To enable a compiler one must either install Xcode (OS X ≤ 10.8) or
Xcode Command Line Tools (OS X ≥ 10.9). We will focus on the later as the installation requires the use of Terminal and
the install size is significantly less than the prior, which is setup using an installer.

To install XCode Command Line Tools, one must do the following:

1. Open Terminal found in /Applications/Utilities/

2. Type the following:

$ xcode-select --install

3. Press "Install" on the window that pops up.

4. After the installation is complete, type the following in Terminal to ensure the installation was successful:

$ gcc --version

After major system updates, e.g. going from version 10.11 to 10.12, you may need to accept the terms and licenses
associated the the Xcode command line tools prior to being allowed to compile again.

To do so, open the Terminal found in /Applications/Utilities/ and type:

$ git

Press spacebar to move down to the end of the file. There, you should see a prompt asking whether or not you accept
the terms via either "Yes" or "No". Enter "Yes" if you agree to the terms to have the command line tools reactivated.

2.10.2 Differing Mac OS X R Versions Leading to Binary Failures

There are currently two distinct versions of R for OS X. The first version is a legacy version meant for Mac OS X 10.6
(Snow Leopard) - 10.8 (Mountain Lion). The second version is for more recent system Mac OS X 10.9 (Mavericks), 10.10
(Yosemite), 10.11 (El Capitan). The distinction comes as a result of a change in the compilers shipped with the operating
system. As a result, avoid sending package binaries if it is known that your collaborators are working on older systems as
the R binaries for these two versions will not be able to mix.

2.10.3 No OpenMP Support

The OS X operating environment lacks the ability to parallelize sections of code using the OpenMP standard. As a result,
make sure to protect any reference to OpenMP. In this case, protect the inclusion of headers with:

#ifdef _OPENMP

#include <omp.h>

#endif

And when one goes to parallelize portions of code use:

#ifdef _OPENMP

// multithreaded OpenMP version of code
#else

// single-threaded version of code
#endif

Doing so will enable the parallelization of the process on Linux and Windows. In the event that Apple enables OpenMP
later on, this code will also allow for parallelization to occur.

The reason for the lack of OpenMP support is because under OS X, you are not using the gcc compiler. Instead, all the
requests are being redirected to llvm. As of LLVM 3.7, the community initiative to enable OpenMP has been merged into

7

https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://developer.apple.com/library/ios/technotes/tn2339/_index.html
http://openmp.org/wp/
https://clang-omp.github.io/

the official branch. Thus, there is hope in the next release of Xcode (around WWDC in June 2016) that OpenMP will work
on OS X.

2.10.4 Additional Information / Help

Below are additional resources that provide information regarding compiling Rcpp code on OS X.

1. A helpful post was provided by Brian Ripley regarding the use of compiling R code with OS X in April 2014 on the
r-sig-mac list, which is generally recommended for OS X-specific questions and further consultation.

2. Another helpful write-up for installation / compilation on OS X Mavericks is provided by the BioConductor project.

3. Lastly, another resource that exists for installation / compilation help is provided at http://thecoatlessprofessor.
com/programming/r-compiler-tools-for-rcpp-on-os-x/.

Note: If you are running into trouble compiling code with RcppArmadillo, please also see FAQ 2.16 listed below.

2.11 Does Rcpp work on solaris/suncc ?
Yes, it generally does. But as we do not have access to such systems, some issues persist on the CRAN test systems.

2.12 Does Rcpp work with Revolution R ?
We have not tested it yet. Rcpp might need a few tweaks to work with the compilers used by Revolution R (if those differ
from the defaults).

2.13 Is it related to CXXR ?
CXXR is an ambitious project that aims to totally refactor the R interpreter in C++. There are a few similaritites with Rcpp
but the projects are unrelated.

CXXR and Rcpp both want R to make more use of C++ but they do it in very different ways.

2.14 How do I quickly prototype my code using Attributes?
Rcpp version 0.10.0 and later offer a new feature ’Rcpp Attributes’ which is described in detail in its own vignette (Allaire
et al., 2015). In short, it offers functions evalCpp, cppFunction and sourceCpp which extend the functionality of the
cxxfunction function.

2.15 What about the new ’no-linking’ feature??
Starting with Rcpp 0.11.0, functionality provided by Rcpp and used by packages built with Rcpp accessed via the
registration facility offered by R (and which is used by lme4 and Matrix, as well as by xts and zoo). This requires
no effort from the user / programmer, and even frees us from explicit linking instruction. In most cases, the files
src/Makevars and src/Makevars.win can now be removed. Exceptions are the use of RcppArmadillo (which needs an
entry PKG_LIBS=$(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)) and packages linking to external libraries they use.

But for most packages using Rcpp, only two things are required:

• an entry in DESCRIPTION such as Imports: Rcpp (which may be versioned as in Imports: Rcpp (>= 0.11.0)),
and

• an entry in NAMESPACE to ensure Rcpp is correctly instantiated, for example importFrom(Rcpp, evalCpp).

The name of the symbol does not really matter; once one symbol is imported all symbols should be available.

8

http://openmp.llvm.org/
https://stat.ethz.ch/pipermail/r-sig-mac/2014-April/010835.html
https://stat.ethz.ch/pipermail/r-sig-mac/2014-April/010835.html
http://www.bioconductor.org/developers/how-to/mavericks-howto/
http://thecoatlessprofessor.com/programming/r-compiler-tools-for-rcpp-on-os-x/
http://thecoatlessprofessor.com/programming/r-compiler-tools-for-rcpp-on-os-x/
http://www.rdocumentation.org/packages/Rcpp/functions/evalCpp
http://www.rdocumentation.org/packages/Rcpp/functions/cppFunction
http://www.rdocumentation.org/packages/Rcpp/functions/sourceCpp
http://www.rdocumentation.org/packages/Rcpp/functions/cxxfunction

2.16 I am having problems building RcppArmadillo on OS X, any help ?
Odds are your build failures are due to the absence of gfortran and its associated libraries. The errors that you may
receive are related to either:

“-lgfortran” or “-lquadmath”

To rectify the root of these errors, there are two options available. The first option is to download and use a fixed set
of gfortran binaries that are used to compile R for OS X (e.g. given by the maintainers of the OS X build). The second
option is to either use pre-existing gfortran binaries on your machine or download the latest.

2.16.1 Fixed set of gfortran binaries

Within this option, you will install a pre-compiled gfortran binary from r.research.att.com/libs/. The binary listed
here was compiled by Simon Urbanek the maintainer of the OS X R versions.

To install the pre-compiled gfortran binary, do the following:

1. Open Terminal found in /Applications/Utilities/

2. Type the following:

curl -O http://r.research.att.com/libs/gfortran-4.8.2-darwin13.tar.bz2
sudo tar fvxz gfortran-4.8.2-darwin13.tar.bz2 -C /

For more information on this error, please see TheCoatlessProfessor’s Rcpp, RcppArmadillo and OS X Mavericks
"-lgfortran" and "-lquadmath" error.

2.16.2 Pre-existing or latest gfortran binaries

Most OS X users that have a pre-existing gfortran binaries or want the latest version, typically use a custom packaging
solution to install gfortran; macports, homebrew, and fink are the usual suspects here. In general, we recommend using
homebrew, and we provide a short set of instructions for installing gfortran below.

After installing homebrew by following the instructions here, you can install the latest version of gfortran with:
brew install gcc

Note that gfortran is available as part of the gcc ’formula’ by default and cannot be downloaded separately, but one
can freely use gfortran with Apple (or LLVM) clang compilers (as used by default on OS X since Mavericks).

You may need to set the FLIBS variable in your /.R/Makevars to point to the location of the gfortran library paths.
A solution is outlined on StackOverflow, but the relevant details are copied in brief here.

In short, you want to add this entry to your /.R/Makevars:

FLIBS=‘gfortran -print-search-dirs | grep ^libraries: | sed ’s|libraries: =||’ | sed

’s|:| -L|g’ | sed ’s|^|-L|’‘

This invocation explicitly asks and constructs the library link paths from the gfortran’s reported search paths, and
produces a set of paths suitable to be passed to FLIBS. Rwill then search these paths when attempting to locate e.g
libgfortran when compiling RcppArmadillo or other FORTRAN-dependent code.

Also see FAQ 2.10 above, and the links provided in that answer. In the event the above solution does not satisfy all the
OS X build problems.

3 Examples
The following questions were asked on the Rcpp-devel mailing list, which is our preferred place to ask questions as it
guarantees exposure to a number of advanced Rcpp users. The StackOverflow tag for rcpp is an alternative; that site is also
easily searchable.

Several dozen fully documented examples are provided at the Rcpp Gallery – which is also open for new contributions.

9

http://r.research.att.com/libs/
http://thecoatlessprofessor.com/programming/rcpp-rcpparmadillo-and-os-x-mavericks-lgfortran-and-lquadmath-error/
http://thecoatlessprofessor.com/programming/rcpp-rcpparmadillo-and-os-x-mavericks-lgfortran-and-lquadmath-error/
https://www.macports.org/
http://brew.sh/
http://www.finkproject.org/
http://brew.sh/
http://stackoverflow.com/questions/29992066/rccp-warning-directory-not-found-for-option-l-usr-local-cellar-gfortran-4-8/29993906#29993906
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
http://stackoverflow.com/questions/tagged/rcpp
http://gallery.rcpp.org

3.1 Can I use templates with Rcpp ?
I’m curious whether one can provide a class definition inline in an R script and then initialize an instance of the
class and call a method on the class, all inline in R.

This question was initially about using templates with inline, and we show that (older) answer first. It is also easy with
Rcpp Attributes which is what we show below.

3.1.1 Using inline

Most certainly, consider this simple example of a templated class which squares its argument:

inc <- ’template <typename T>

class square : public std::unary_function<T,T> {

public:

T operator()(T t) const { return t*t ;}

};

’

src <- ’

double x = Rcpp::as<double>(xs);

int i = Rcpp::as<int>(is);

square<double> sqdbl;

square<int> sqint;

return Rcpp::DataFrame::create(Rcpp::Named("x", sqdbl(x)),

Rcpp::Named("i", sqint(i)));

’

fun <- cxxfunction(signature(xs="numeric", is="integer"),
body=src, include=inc, plugin="Rcpp")

fun(2.2, 3L)

3.1.2 Using Rcpp Attributes

We can also use ’Rcpp Attributes’ (Allaire et al., 2015)—as described in FAQ 2.2.2 and FAQ 2.14 above. Simply place the
following code into a file and use sourceCpp on it. It will even run the R part at the end.

10

http://www.rdocumentation.org/packages/Rcpp/functions/sourceCpp

#include <Rcpp.h>

template <typename T> class square : public std::unary_function<T,T> {

public:
T operator()(T t) const { return t*t ;}

};

// [[Rcpp::export]]
Rcpp::DataFrame fun(double x, int i) {

square<double> sqdbl;

square<int> sqint;

return Rcpp::DataFrame::create(Rcpp::Named("x", sqdbl(x)),

Rcpp::Named("i", sqint(i)));

}

/*** R
fun(2.2, 3L)
*/

3.2 Can I do matrix algebra with Rcpp ?
Rcpp allows element-wise operations on vector and matrices through operator overloading and STL interface, but
what if I want to multiply a matrix by a vector, etc ...

Currently, Rcpp does not provide binary operators to allow operations involving entire objects. Adding operators to Rcpp
would be a major project (if done right) involving advanced techniques such as expression templates. We currently do not
plan to go in this direction, but we would welcome external help. Please send us a design document.

However, we have developed the RcppArmadillo package (Eddelbuettel, François, and Bates, 2016; Eddelbuettel and
Sanderson, 2014) that provides a bridge between Rcpp and Armadillo (Sanderson, 2010). Armadillo supports binary
operators on its types in a way that takes full advantage of expression templates to remove temporaries and allow chaining
of operations. That is a mouthful of words meaning that it makes the code go faster by using fiendishly clever ways available
via the so-called template meta programming, an advanced C++ technique. Also, the RcppEigen package (Bates and
Eddelbuettel, 2013) provides an alternative using the Eigen template library.

3.2.1 Using inline

The following example is adapted from the examples available at the project page of Armadillo. It calculates x ′ × Y −1 × z

// copy the data to armadillo structures
arma::colvec x = Rcpp::as<arma::colvec> (x_);

arma::mat Y = Rcpp::as<arma::mat>(Y_) ;

arma::colvec z = Rcpp::as<arma::colvec>(z_) ;

// calculate the result
double result = arma::as_scalar(arma::trans(x) * arma::inv(Y) * z);

// return it to R
return Rcpp::wrap(result);

If stored in a file myfile.cpp, we can use it via inline:

11

http://eigen.tuxfamily.org

> fx <- cxxfunction(signature(x_="numeric", Y_="matrix", z_="numeric"),

+ paste(readLines("myfile.cpp"), collapse="\n"),

+ plugin="RcppArmadillo")

> fx(1:4, diag(4), 1:4)

The focus is on the code arma::trans(x) * arma::inv(Y) * z, which performs the same operation as the R code
t(x) %*% solve(Y) %*% z, although Armadillo turns it into only one operation, which makes it quite fast. Armadillo
benchmarks against other C++ matrix algebra libraries are provided on the Armadillo website.

It should be noted that code below depends on the version 0.3.5 of inline and the version 0.2.2 of RcppArmadillo

3.2.2 Using Rcpp Attributes

We can also write the same example for use with Rcpp Attributes:

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
double fx(arma::colvec x, arma::mat Y, arma::colvec z) {

// calculate the result
double result = arma::as_scalar(arma::trans(x) * arma::inv(Y) * z);

return result;

}

/*** R
fx(1:4, diag(4), 1:4)
*/

Here, the additional Rcpp::depends(RcppArmadillo) ensures that code can be compiled against the RcppArmadillo
header, and that the correct libraries are linked to the function built from the supplied code example.

Note how we do not have to concern ourselves with conversion; R object automatically become (Rcpp)Armadillo objects
and we can focus on the single computing a (scalar) result.

3.3 Can I use code from the Rmath header and library with Rcpp ?
Can I call functions defined in the Rmath header file and the standalone math library for R–as for example the
random number generators?

Yes, of course. This math library exports a subset of R, but Rcpp has access to much more. Here is another simple example.
Note how we have to use and instance of the RNGScope class to set and re-set the random-number generator. This also
illustrates Rcpp sugar as we are using a vectorised call to rnorm. Moreover, because the RNG is reset, the two calls result in
the same random draws. If we wanted to control the draws, we could explicitly set the seed after the RNGScope object has
been instantiated.

> fx <- cxxfunction(signature(),

+ 'RNGScope();
return rnorm(5, 0, 100);',

+ plugin="Rcpp")

> set.seed(42)

> fx()

[1] 137.09584 -56.46982 36.31284 63.28626 40.42683

> fx()

[1] -10.612452 151.152200 -9.465904 201.842371 -6.271410

12

http://arma.sourceforge.net/speed.html

Newer versions of Rcpp also provide the actual Rmath function in the R namespace, i.e. as R::rnorm(m,s) to obtain a
scalar random variable distributed as N(m, s).

Using Rcpp Attributes, this can be as simple as

> cppFunction('Rcpp::NumericVector ff(int n) { return rnorm(n, 0, 100); }')
> set.seed(42)

> ff(5)

[1] 137.09584 -56.46982 36.31284 63.28626 40.42683

> ff(5)

[1] -10.612452 151.152200 -9.465904 201.842371 -6.271410

> set.seed(42)

> rnorm(5, 0, 100)

[1] 137.09584 -56.46982 36.31284 63.28626 40.42683

> rnorm(5, 0, 100)

[1] -10.612452 151.152200 -9.465904 201.842371 -6.271410

This illustrates the Rcpp Attributes adds the required RNGScope object for us. It also shows how setting the seed from R
affects draws done via C++ as well as R, and that identical random number draws are obtained.

3.4 Can I use NA and Inf with Rcpp ?
R knows about NA and Inf. How do I use them from C++?

Yes, see the following example:

> src <- 'Rcpp::NumericVector v(4);

v[0] = R_NegInf; // -Inf

v[1] = NA_REAL; // NA

v[2] = R_PosInf; // Inf

v[3] = 42; // see the Hitchhiker Guide

return Rcpp::wrap(v);'
> fun <- cxxfunction(signature(), src, plugin="Rcpp")

> fun()

[1] -Inf NA Inf 42

Similarly, for Rcpp Attributes:

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector fun(void) {

Rcpp::NumericVector v(4);

v[0] = R_NegInf; // -Inf
v[1] = NA_REAL; // NA
v[2] = R_PosInf; // Inf
v[3] = 42; // see the Hitchhiker Guide
return v;

}

3.5 Can I easily multiply matrices ?
Can I multiply matrices easily?

13

Yes, via the RcppArmadillo package which builds upon Rcpp and the wonderful Armadillo library described above in
FAQ 3.2:

> txt <- 'arma::mat Am = Rcpp::as< arma::mat >(A);

arma::mat Bm = Rcpp::as< arma::mat >(B);

return Rcpp::wrap(Am * Bm);'
> mmult <- cxxfunction(signature(A="numeric", B="numeric"),

+ body=txt, plugin="RcppArmadillo")

> A <- matrix(1:9, 3, 3)

> B <- matrix(9:1, 3, 3)

> C <- mmult(A, B)

Armadillo supports a full range of common linear algebra operations.
The RcppEigen package provides an alternative using the Eigen template library.
Rcpp Attributes, once again, makes this even easier:

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::mat mult(arma::mat A, arma::mat B) {

return A*B;

}

/*** R
A <- matrix(1:9, 3, 3)
B <- matrix(9:1, 3, 3)
mult(A,B)
*/

which can be built, and run, from R via a simple sourceCpp call—and will also run the small R example at the end.

3.6 How do I write a plugin for inline and/or Rcpp Attributes?
How can I create my own plugin for use by the inline package?

Here is an example which shows how to it using GSL libraries as an example. This is merely for demonstration, it is also
not perfectly general as we do not detect locations first—but it serves as an example:

14

http://eigen.tuxfamily.org
http://www.rdocumentation.org/packages/Rcpp/functions/sourceCpp

> gslrng <- '
int seed = Rcpp::as<int>(par) ;

gsl_rng_env_setup();

gsl_rng *r = gsl_rng_alloc (gsl_rng_default);

gsl_rng_set (r, (unsigned long) seed);

double v = gsl_rng_get (r);

gsl_rng_free(r);

return Rcpp::wrap(v);'
> plug <- Rcpp:::Rcpp.plugin.maker(

+ include.before = "#include <gsl/gsl_rng.h>",

+ libs = paste("-L/usr/local/lib/R/site-library/Rcpp/lib -lRcpp",

+ "-Wl,-rpath,/usr/local/lib/R/site-library/Rcpp/lib",

+ "-L/usr/lib -lgsl -lgslcblas -lm"))

> registerPlugin("gslDemo", plug)

> fun <- cxxfunction(signature(par="numeric"), gslrng, plugin="gslDemo")

> fun(0)

Here the Rcpp function Rcpp.plugin.maker is used to create a plugin ’plug’ which is then registered, and subsequently
used by inline.

The same plugins can be used by Rcpp Attributes as well.

3.7 How can I pass one additional flag to the compiler?
How can I pass another flag to the g++ compiler without writing a new plugin?

The quickest way is to modify the return value from an existing plugin. Here we use the default one from Rcpp itself in
order to pass the new flag -std=c++0x. As it does not set the PKG_CXXFLAGS variable, we simply assign this. For other
plugins, one may need to append to the existing values instead.

> myplugin <- getPlugin("Rcpp")

> mypluginenvPKG_CXXFLAGS <- "-std=c++11"

> f <- cxxfunction(signature(), settings=myplugin, body='
+ std::vector<double> x = { 1.0, 2.0, 3.0 }; // fails without -std=c++0x

+ return Rcpp::wrap(x);

+ ')
> f()

For Rcpp Attributes, the attributes Rcpp::plugin() can be used. Currently supported plugins are for C++11 as well as
for OpenMP.

3.8 How can I set matrix row and column names ?
Ok, I can create a matrix, but how do I set its row and columns names?

Pretty much the same way as in R itself: We define a list with two character vectors, one each for row and column
names, and assign this to the dimnames attribute:

15

> src <- '
Rcpp::NumericMatrix x(2,2);

x.fill(42); // or more interesting values

Rcpp::List dimnms = // two vec. with static names

Rcpp::List::create(Rcpp::CharacterVector::create("cc", "dd"),

Rcpp::CharacterVector::create("ee", "ff"));

// and assign it

x.attr("dimnames") = dimnms;

return(x);

'
> fun <- cxxfunction(signature(), body=src, plugin="Rcpp")

> fun()

The same logic, but used with Rcpp Attributes:

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::List fun(void) {

Rcpp::NumericMatrix x(2,2);

x.fill(42); // or more interesting values
Rcpp::List dimnms = // two vec. with static names

Rcpp::List::create(Rcpp::CharacterVector::create("cc", "dd"),

Rcpp::CharacterVector::create("ee", "ff"));

// and assign it
x.attr("dimnames") = dimnms;

return(x);
}

3.9 Why can long long types not be cast correctly?
That is a good and open question. We rely on the basic R types, notably integer and numeric. These can be cast to and
from C++ types without problems. But there are corner cases. The following example, contributed by a user, shows that
we cannot reliably cast long types (on a 64-bit machines).

> BigInts <- cxxfunction(signature(),

+ 'std::vector<long> bigints;

bigints.push_back(12345678901234567LL);

bigints.push_back(12345678901234568LL);

Rprintf("Difference of %ld\\n", 12345678901234568LL - 12345678901234567LL);

return wrap(bigints);', plugin="Rcpp", includes="#include <vector>")

> retval<-BigInts()

> stopifnot(length(unique(retval)) == 2)

While the difference of one is evident at the C++ level, it is no longer present once cast to R. The 64-bit integer values
get cast to a floating point types with a 53-bit mantissa. We do not have a good suggestion or fix for casting 64-bit integer
values: 32-bit integer values fit into integer types, up to 53 bit precision fits into numeric and beyond that truly large
integers may have to converted (rather crudely) to text and re-parsed. Using a different representation as for example from
the GNU Multiple Precision Arithmetic Library may be an alternative.

16

http://gmplib.org/

3.10 What LaTeX packages do I need to typeset the vignettes ?
I would like to typeset the vignettes. What do I need?

The TeXLive distribution seems to get bigger and bigger. What you need to install may depend on your operating system.
Specific per-platform notes:

Windows users probably want the MiKTeX. Suggestions for a more detailed walk through would be appreciated.

OS X users seem to fall into camps which like or do not like brew / homebrew. One suggestion was to install MacTeX but
at approximately 2.5gb (as of January 2016) this is not lightweight.

Linux users probably want the full TeXLive set from their distribution. On Debian these packages are installed to
build the R package itself: texlive-base, texlive-latex-base, texlive-generic-recommended, texlive-

fonts-recommended, texlive-fonts-extra, texlive-extra-utils, texlive-latex-recommended, texlive-

latex-extra. Using texlive-full may be a shortcut. Fedora and other distributions should have similar packages.

3.11 Why is there a limit of 20 on some constructors?
Ok, I would like to pass N object but you only allow 20. How come?

In essence, and in order to be able to compile it with the largest number of compilers, Rcpp is constrained by the older
C++ standards which do not support variadic function arguments. So we actually use macros and code generator scripts to
explicitly enumerate arguments, and that number has to stop at some limit. We chose 20.

A good discussion is available at this StackOverflow question concering data.frame creation with Rcpp. One solution
offers a custom ListBuilder class to circumvent the limit; another suggests to simply nest lists.

3.12 Can I use default function parameters with Rcpp?
Yes, you can use default parameters with some limitations. The limitations are mainly related to string literals and empty
vectors. This is what is currently supported:

• String literals delimited by quotes (e.g. "foo")

• Integer and Decimal numeric values (e.g. 10 or 4.5)

• Pre-defined constants including:

– Booleans: true and false

– Null Values: R_NilValue, NA_STRING, NA_INTEGER, NA_REAL, and NA_LOGICAL.

• Selected vector types can be instantiated using the empty form of the ::create static member function.

– CharacterVector, IntegerVector, and NumericVector

• Matrix types instantiated using the rows, cols constructor Rcpp::<Type>Matrix n(rows,cols)

– CharacterMatrix, IntegerMatrix, and NumericMatrix)

To illustrate, please consider the following example that provides a short how to:

17

https://www.tug.org/texlive/
http://miktex.org/
https://tug.org/mactex/mactex-download.html
https://www.tug.org/texlive/
http://www.debian.org
http://stackoverflow.com/questions/27371543

#include <Rcpp.h>

// [[Rcpp::export]]
void sample_defaults(NumericVector x = NumericVector::create(), // Size 0 vector

bool bias = true, // Set to true
std::string method = "rcpp rules!"){ // Default string

Rcpp::Rcout << "x size: " << x.size() << ", ";

Rcpp::Rcout << "bias value: " << bias << ", ";

Rcpp::Rcout << "method value: " << method << std::endl;

}

/*** R
sample_defaults() # all defaults
sample_defaults(1:5) # supply x values
sample_defaults(bias = FALSE,

method = "rstats") # supply bool and string
*/

Note: In cpp, the default bool values are true and false whereas in R the valid types are TRUE or FALSE.

3.13 Can I use C++11, C++14, C++17, ... with Rcpp?
But of course. In a nutshell, this boils down to what your compiler supports, and also what R supports. We expanded a little
on this in Rcpp Gallery article providing more detail. What follows in an abridged summary.

You can always locally set appropriate PKG_CXXFLAGS as an environment variable, or via /.R/Makevars. You can also
plugins and/or R support from src/Makevars:

C++11 has been supported since early 2013 via a plugin selecting the language standard which is useful for sourceCpp() etc.
For packages, R has supported it since R 3.1.0 which added the option to select the language standard via CXX_STD =

CXX11. As of early 2017, over 120 packages on CRAN use this.

C++14 has been supported since early 2016 via a plugin selecting the language standard which is useful for sourceCpp() etc.
For packages, R supports it since R 3.4.0 adding the option to select the language standard via CXX_STD = CXX14.

C++17 is itself more experimental now, but if you have a compiler supporting (at least parts of) it, you can use it via plugin
(starting with Rcpp 0.12.10) for use via sourceCpp(), or via PKG_CXXFLAGS or other means to set compiler options.
R support may be available at a later date.

4 Support

4.1 Is the API documented ?
You bet. We use doxygen to generate html, latex and man page documentation from the source. The html documentation is
available for browsing, as a very large pdf file, and all three formats are also available a zip-archives: html, latex, and man.

4.2 Does it really work ?
We take quality seriously and have developped an extensive unit test suite to cover many possible uses of the Rcpp API.

We are always on the look for more coverage in our testing. Please let us know if something has not been tested enough.

4.3 Where can I ask further questions ?
The Rcpp-devel mailing list hosted at R-forge is by far the best place. You may also want to look at the list archives to see if
your question has been asked before.

You can also use Stack Overflow via its ’rcpp’ tag.

18

http://gallery.rcpp.org/articles/rcpp-and-c++11-c++14-c++17/
http://dirk.eddelbuettel.com/code/rcpp/html/index.html
http://dirk.eddelbuettel.com/code/rcpp/Rcpp_refman.pdf
http://dirk.eddelbuettel.com/code/rcpp/rcpp-doc-html.zip
http://dirk.eddelbuettel.com/code/rcpp/rcpp-doc-latex.zip
http://dirk.eddelbuettel.com/code/rcpp/rcpp-doc-man.zip
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
http://stackoverflow.com/questions/tagged/rcpp

4.4 Where can I read old questions and answers ?
The normal Rcpp-devel mailing list hosting at R-forge contains an archive, which can be searched via swish.

Alternatively, one can also use Gmane on Rcpp-devel as well as Mail-Archive on Rcpp-devel both of which offer web-based
interfaces, including searching.

4.5 I like it. How can I help ?
We maintain a list of open issues in the Github repository. We welcome pull requests and suggest that code submissions
come corresponding unit tests and, if applicable, documentation.

If you are willing to donate time and have skills in C++, let us know. If you are willing to donate money to sponsor
improvements, let us know too.

You can also spread the word about Rcpp. There are many packages on CRAN that use C++, yet are not using Rcpp.
You could blog about it, or get the word out otherwise.

Last but not least the Rcpp Gallery is open for user contributions.

4.6 I don’t like it. How can I help ?
It is very generous of you to still want to help. Perhaps you can tell us what it is that you dislike. We are very open to
constructive criticism.

4.7 Can I have commercial support for Rcpp ?
Sure you can. Just send us an email, and we will be happy to discuss the request.

4.8 I want to learn quickly. Do you provide training courses ?
Yes. Just send us an email.

4.9 Where is the code repository ?
From late 2008 to late 2013, we used the Subversion repository at R-Forge which contained Rcpp and a number of related
packages. It still has the full history as well as number of support files.

We have since switched to a Git repository at Github for Rcpp (as well as for RcppArmadillo and RcppEigen).

5 Known Issues
Contained within this section is a list of known issues regarding Rcpp. The issues listed here are either not able to be fixed
due to breaking application binary interface (ABI), would impact the ability to reproduce pre-existing results, or require
significant work. Generally speaking, these issues come to light only when pushing the edge capabilities of Rcpp.

5.1 Rcpp changed the (const) object I passed by value
Rcpp objects are wrappers around the underlying R objects’ SEXP, or S-expression. The SEXP is a pointer variable that
holds the location of where the R object data has been stored (R Core Team, 2015c, Section 1.1). That is to say, the SEXP

does not hold the actual data of the R object but merely a reference to where the data resides. When creating a new Rcpp
object for an R object to enter C++, this object will use the same SEXP that powers the original R object if the types match
otherwise a new SEXP must be created to be type safe. In essence, the underlying SEXP objects are passed by reference
without explicit copies being made into C++. We refer to this arrangement as a proxy model.

As for the actual implementation, there are a few consequences of the proxy model. The foremost consequence within
this paradigm is that pass by value is really a pass by reference. In essence, the distinction between the following two
functions is only visual sugar:

void implicit_ref(NumericVector X);

void explicit_ref(NumericVector& X);

19

https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
http://lists.r-forge.r-project.org/mailman/swish.cgi?query=listname=rcpp-devel
http://thread.gmane.org/gmane.comp.lang.r.rcpp/
http://www.mail-archive.com/rcpp-devel@lists.r-forge.r-project.org/info.html
https://github.com/RcppCore/Rcpp/issues?state=open
http://gallery.rcpp.org
https://r-forge.r-project.org/scm/?group_id=155
http://github.com/RcppCore/Rcpp

In particular, when one is passing by value what occurs is the instantiation of the new Rcpp object that uses the same
SEXP for the R object. As a result, the Rcpp object is “linked” to the original R object. Thus, if an operation is performed
on the Rcpp object, such as adding 1 to each element, the operation also updates the R object causing the change to be
propagated to R’s interactive environment.

#include<Rcpp.h>

// [[Rcpp::export]]
void implicit_ref(Rcpp::NumericVector X){

X = X + 1.0;

}

// [[Rcpp::export]]
void explicit_ref(Rcpp::NumericVector& X){

X = X + 1.0;

}

a <- 1.5:4.5

b <- 1.5:4.5

implicit_ref(a)

a

explicit_ref(b)

b

There are two exceptions to this rule. The first exception is that a deep copy of the object can be made by explicit use of
Rcpp:clone(). In this case, the cloned object has no link to the original R object. However, there is a time cost associated
with this procedure as new memory must be allocated and the previous values must be copied over. The second exception,
which was previously foreshadowed, is encountered when Rcpp and R object types do not match. One frequent example of
this case is when the R object generated from seq() or a:b reports a class of "integer" while the Rcpp object is setup to
receive the class of "numeric" as its object is set to NumericVector or NumericMatrix. In such cases, this would lead to
a new SEXP object being created behind the scenes and, thus, there would not be a link between the Rcpp object and R
object. So, any changes in C++ would not be propagated to R unless otherwise specified.

#include<Rcpp.h>

// [[Rcpp::export]]
void int_vec_type(Rcpp::IntegerVector X){

X = X + 1.0;

}

// [[Rcpp::export]]
void num_vec_type(Rcpp::NumericVector X){

X = X + 1.0;

}

20

> a <- 1:5

> b <- 1:5

> class(a)

> int_vec_type(a)

> a

> num_vec_type(b)

> b

With this being said, there is one last area of contention with the proxy model: the keyword const. The const

declaration indicates that an object is not allowed to be modified by any action. Due to the way the proxy model paradigm
works, there is a way to “override” the const designation. Simply put, one can create a new Rcpp object without the const
declaration from a pre-existing one. As a result, the new Rcpp object would be allowed to be modified by the compiler
and, thus, modifying the initial SEXP object. Therefore, the initially secure R object would be altered. To illustrate this
phenomenon, consider the following scenario:

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector const_override_ex(const Rcpp::NumericVector& X) {

Rcpp::NumericVector Y(X); // Create object from SEXP
Y = Y * 2; // Modify new object
return X; // Return old object

}

> x <- 1:10

> const_override_ex(x)

> x

5.2 Issues with implicit conversion from an Rcpp object to a scalar or other Rcpp
object
Not all Rcpp expressions are directly compatible with operator=. Compability issues stem from many Rcpp objects and
functions returning an intermediary result which requires an explicit conversion. In such cases, the user may need to assist
the compiler with the conversion.

There are two ways to assist with the conversion. The first is to construct storage variable for a result, calculate the
result, and then store a value into it. This is typically what is needed when working with Character<Type> and String in
Rcpp due to the Rcpp::internal::string_proxy class. Within the following code snippet, the aforementioned approach
is emphasized:

#include<Rcpp.h>

// [[Rcpp::export]]
std::string explicit_string_conv(Rcpp::CharacterVector X) {

std::string s; // define storage
s = X[0]; // assign from CharacterVector
return s;

}

If one were to use a direct allocation and assignment strategy, e.g. std::string s = X[0], this would result in the
compiler triggering a conversion error on some platforms. The error would be similar to:

21

error: no viable conversion from ’Proxy’ (aka ’string_proxy<16>’)

to ’std::string’ (aka ’basic_string<char, char_traits<char>, allocator<char> >’)

The second way to help the compiler is to use an explicit Rcpp type conversion function, if one were to exist. Examples
of Rcpp type conversion functions include as<T>(), .get() for cumsum(), is_true() and is_false() for any() or
all().

5.3 Using operator= with a scalar replaced the object instead of filling element-wise
Assignment using the operator= with either Vector and Matrix classes will not elicit an element-wise fill. If you seek an
element-wise fill, then use the .fill() member method to propagate a single value throughout the object. With this being
said, the behavior of operator= differs for the Vector and Matrix classes.

The implementation of the operator= for the Vector class will replace the existing vector with the assigned value.
This behavior is valid even if the assigned value is a scalar value such as 3.14 or 25 as the object is cast into the appropriate
Rcpp object type. Therefore, if a Vector is initialized to have a length of 10 and a scalar is assigned via operator=, then
the resulting Vector would have a length of 1. See the following code snippet for the aforementioned behavior.

#include<Rcpp.h>

// [[Rcpp::export]]
void vec_scalar_assign(int n, double fill_val) {

Rcpp::NumericVector X(n);

Rcpp::Rcout << "Value of Vector on Creation: " << std::endl << X << std::endl;

X = fill_val;

Rcpp::Rcout << "Value of Vector after Assignment: " << std::endl << X << std::endl;

}

> vec_scalar_assign(5L, 3.14)

Now, the Matrix class does not define its own operator= but instead uses the Vector class implementation. This leads
to unexpected results while attempting to use the assignment operator with a scalar. In particular, the scalar will be coerced
into a square Matrix and then assigned. For an example of this behavior, consider the following code:

#include<Rcpp.h>

// [[Rcpp::export]]
void mat_scalar_assign(int n, double fill_val) {

Rcpp::NumericMatrix X(n, n);

Rcpp::Rcout << "Value of Matrix on Creation: " << std::endl << X << std::endl;

X = fill_val;

Rcpp::Rcout << "Value of Matrix after Assignment: " << std::endl << X << std::endl;

}

> mat_scalar_assign(2L, 3.0)

5.4 Long Vector support on Windows
Prior to R 3.0.0, the largest vector one could obtain was at most 231 − 1 elements. With the release of R 3.0.0, long vector
support was added to allow for largest vector possible to increase up to 252 elements on x64 bit operating systems (c.f.
Long Vectors help entry). Once this was established, support for long vectors within the Rcpp paradigm was introduced
with Rcpp version 0.12.0 (c.f Rcpp 0.12.0 annoucement).

22

https://stat.ethz.ch/R-manual/R-devel/library/base/html/LongVectors.html
http://dirk.eddelbuettel.com/blog/2015/07/25/

However, the requirement for using long vectors in Rcpp necessitates the presence of compiler support for the R_xlen_t,
which is platform dependent on how ptrdiff_t is implemented. Unfortunately, this means that on the Windows platform
the definition of R_xlen_t is of type long instead of long long when compiling under the C++98 specification. Therefore,
to solve this issue one must compile under the specification for C++11 or later version.

There are three options to trigger compilation with C++11. The first – and most likely option to use – will be the plugin
support offered by Rcpp attributes. This is engaged by adding // [[Rcpp::plugins(cpp11)]] to the top of the C++
script. For diagnostic and illustrativative purposes, consider the following code which checks to see if R_xlen_t is available
on your platform:

#include <Rcpp.h>

// Force compilation mode to C++11
// [[Rcpp::plugins(cpp11)]]

// [[Rcpp::export]]
bool test_long_vector_support() {

#ifdef RCPP_HAS_LONG_LONG_TYPES

return true;
#else

return false;
#endif

}

> test_long_vector_support()

The remaining two options are for users who have opted to embed Rcpp code within an R package. In particular, the
second option requires adding CXX_STD = CXX11 to a Makevars file found in the /src directory. Finally, the third option
is to add SystemRequirements:C++11 in the package’s DESCRIPTION file.

Please note that the support for C++11 prior to R v3.3.0 on Windows is limited. Therefore, plan accordingly if the goal
is to support older versions of R.

5.5 Sorting with STL on a CharacterVector produces problematic results
The Standard Template Library’s (STL) std::sort algorithm performs adequately for the majority of Rcpp data types.
The notable exception that makes what would otherwise be a universal quantifier into an existential quantifier is the
CharacterVector data type. Chiefly, the issue with sorting strings is related to how the CharacterVector relies upon the
use of Rcpp::internal::string_proxy. In particular, Rcpp::internal::string_proxy is not MoveAssignable since
the left hand side of operator=(const string_proxy &rhs) is not viewed as equivalent to the right hand side before
the operation (ISO/IEC, 2011, p. 466, Table 22). This further complicates matters when using CharacterVector with
std::swap, std::move, std::copy and their variants.

To avoid unwarranted pain with sorting, the preferred approach is to use the .sort() member function of Rcpp objects.
The member function correctly applies the sorting procedure to Rcpp objects regardless of type. Though, sorting is slightly
problematic due to locale as explained in the next entry. In the interim, the following code example illustrates the preferred
approach alongside the problematic STL approach:

23

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::CharacterVector preferred_sort(Rcpp::CharacterVector x) {

Rcpp::CharacterVector y = Rcpp::clone(x);

y.sort();

return y;

}

// [[Rcpp::export]]
Rcpp::CharacterVector stl_sort(Rcpp::CharacterVector x) {

Rcpp::CharacterVector y = Rcpp::clone(x);

std::sort(y.begin(), y.end());

return y;

}

> set.seed(123)

> (X <- sample(c(LETTERS[1:5], letters[1:6]), 11))

> preferred_sort(X)

> stl_sort(X)

In closing, the results of using the STL approach do change depending on whether libc++ or libstdc++ standard
library is used to compile the code. When debugging, this does make the issue particularly complex to sort out. Principally,
compilation with libc++ and STL has been shown to yield the correct results. However, it is not wise to rely upon this
library as a majority of code is compiled against libstdc++ as it more complete.

5.6 Lexicographic order of string sorting differs due to capitalization
Comparing strings within R hinges on the ability to process the locale or native-language environment of the string. In
R, there is a function called Scollate that performs the comparison on locale. Unfortunately, this function has not been
made publicly available and, thus, Rcpp does not have access to it within its implementation of StrCmp. As a result, strings
that are sorted under the .sort() member function are ordered improperly. Specifically, if capitalization is present, then
capitalized words are sorted together followed by the sorting of lowercase words instead of a mixture of capitalized and
lowercase words. The issue is illustrated by the following code example:

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::CharacterVector rcpp_sort(Rcpp::CharacterVector X) {

X.sort();

return X;

}

> x <- c("B", "b", "c", "A", "a")

> sort(x)

> rcpp_sort(x)

24

References
J. J. Allaire, Dirk Eddelbuettel, and Romain François. Rcpp Attributes, 2015. URL http://CRAN.R-Project.org/package=

Rcpp. Vignette included in R package Rcpp.

Douglas Bates and Dirk Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen package. Journal of
Statistical Software, 52(5):1–24, 2013. URL http://www.jstatsoft.org/v52/i05/.

Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp. Use R! Springer, New York, 2013. ISBN 978-1-4614-6867-7.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40(8):
1–18, 2011. URL http://www.jstatsoft.org/v40/i08/.

Dirk Eddelbuettel and Conrad Sanderson. RcppArmadillo: Accelerating R with high-performance C++ linear algebra.
Computational Statistics and Data Analysis, 71:1054–1063, March 2014. doi: 10.1016/j.csda.2013.02.005. URL
http://dx.doi.org/10.1016/j.csda.2013.02.005.

Dirk Eddelbuettel, Romain François, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo templated linear
algebra library, 2016. URL http://CRAN.R-Project.org/package=RcppArmadillo. R package version 0.7.400.2.0.

Dirk Eddelbuettel, Romain François, JJ Allaire, Kevin Ushey, Qiang Kou, Nathan Russel, John Chambers, and Douglas Bates.
Rcpp: Seamless R and C++ Integration, 2017. URL http://CRAN.R-Project.org/package=Rcpp. R package version
0.12.11.

ISO/IEC. C++ 2011 standard document 14882:2011. ISO/IEC Standard Group for Information Technology / Programming
Languages / C++, 2011. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=50372.

R Core Team. R Installation and Administration. R Foundation for Statistical Computing, Vienna, Austria, 2015a. URL
http://CRAN.R-Project.org/doc/manuals/R-admin.html.

R Core Team. Writing R extensions. R Foundation for Statistical Computing, Vienna, Austria, 2015b. URL http://CRAN.

R-Project.org/doc/manuals/R-exts.html.

R Core Team. R internals. R Foundation for Statistical Computing, Vienna, Austria, 2015c. URL http://CRAN.R-Project.

org/doc/manuals/R-ints.html.

Conrad Sanderson. Armadillo: An open source C++ algebra library for fast prototyping and computationally intensive
experiments. Technical report, NICTA, 2010. URL http://arma.sf.net.

Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel, and Romain François. inline: Inline C, C++, Fortran function
calls from R, 2015. URL http://CRAN.R-Project.org/package=inline. R package version 0.3.14.

25

http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp
http://www.jstatsoft.org/v52/i05/
http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://CRAN.R-Project.org/package=RcppArmadillo
http://CRAN.R-Project.org/package=Rcpp
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://CRAN.R-Project.org/doc/manuals/R-admin.html
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://CRAN.R-Project.org/doc/manuals/R-ints.html
http://CRAN.R-Project.org/doc/manuals/R-ints.html
http://arma.sf.net
http://CRAN.R-Project.org/package=inline

	Getting started
	How do I get started ?
	What do I need ?
	What compiler can I use ?
	What other packages are useful ?
	What licenses can I choose for my code?

	Compiling and Linking
	How do I use Rcpp in my package ?
	How do I quickly prototype my code?
	Using inline
	Using Rcpp Attributes

	How do I convert my prototyped code to a package ?
	How do I quickly prototype my code in a package?
	But I want to compile my code with R CMD SHLIB !
	But R CMD SHLIB still does not work !
	What about LinkingTo ?
	Does Rcpp work on windows ?
	Can I use Rcpp with Visual Studio ?
	I am having problems building Rcpp on OS X, any help ?
	Lack of a Compiler
	Differing Mac OS X R Versions Leading to Binary Failures
	No OpenMP Support
	Additional Information / Help

	Does Rcpp work on solaris/suncc ?
	Does Rcpp work with Revolution R ?
	Is it related to CXXR ?
	How do I quickly prototype my code using Attributes?
	What about the new 'no-linking' feature??
	I am having problems building RcppArmadillo on OS X, any help ?
	Fixed set of gfortran binaries
	Pre-existing or latest gfortran binaries

	Examples
	Can I use templates with Rcpp ?
	Using inline
	Using Rcpp Attributes

	Can I do matrix algebra with Rcpp ?
	Using inline
	Using Rcpp Attributes

	Can I use code from the Rmath header and library with Rcpp ?
	Can I use NA and Inf with Rcpp ?
	Can I easily multiply matrices ?
	How do I write a plugin for inline and/or Rcpp Attributes?
	How can I pass one additional flag to the compiler?
	How can I set matrix row and column names ?
	Why can long long types not be cast correctly?
	What LaTeX packages do I need to typeset the vignettes ?
	Why is there a limit of 20 on some constructors?
	Can I use default function parameters with Rcpp?
	Can I use C++11, C++14, C++17, ... with Rcpp?

	Support
	Is the API documented ?
	Does it really work ?
	Where can I ask further questions ?
	Where can I read old questions and answers ?
	I like it. How can I help ?
	I don't like it. How can I help ?
	Can I have commercial support for Rcpp ?
	I want to learn quickly. Do you provide training courses ?
	Where is the code repository ?

	Known Issues
	Rcpp changed the (const) object I passed by value
	Issues with implicit conversion from an Rcpp object to a scalar or other Rcpp object
	Using operator= with a scalar replaced the object instead of filling element-wise
	Long Vector support on Windows
	Sorting with STL on a CharacterVector produces problematic results
	Lexicographic order of string sorting differs due to capitalization

