
Spline terms in a Cox model

Terry Therneau

May 10, 2016

This is a trio of topics that comes up just often enough in my work that I end up re-discovering
how to do it correctly about once a year. A note showing how may be useful to others, it is
certainly a useful reference for me.

1 Plotting smooth terms

Here is a simple example using the MGUS data. I prefer a simpler color palette than the default
found in termplot.

> require(survival)

> mfit <- coxph(Surv(futime, death) ~ sex + pspline(age, df=4), data=mgus)

> mfit

Call:

coxph(formula = Surv(futime, death) ~ sex + pspline(age, df = 4),

data = mgus)

coef se(coef) se2

sexmale 0.22784 0.13883 0.13820

pspline(age, df = 4), lin 0.06682 0.00703 0.00703

pspline(age, df = 4), non

Chisq DF p

sexmale 2.69335 1.00 0.10

pspline(age, df = 4), lin 90.22974 1.00 <2e-16

pspline(age, df = 4), non 3.44005 3.05 0.34

Iterations: 5 outer, 16 Newton-Raphson

Theta= 0.851

Degrees of freedom for terms= 1.0 4.1

Likelihood ratio test=108 on 5.04 df, p=0 n= 241

> termplot(mfit, term=2, se=TRUE, col.term=1, col.se=1)

1

40 50 60 70 80 90

−
4

−
3

−
2

−
1

0
1

2
3

age

P
ar

tia
l f

or
 p

sp
lin

e(
ag

e,
 d

f =
 4

)

Note that the term=2 option is passed directly from the termplot routine to a predict(fit,

type=’terms’) call. For coxph models, the predict function allows terms to be specified either
by position or name. Other routines, e.g. gam, respond only to a name. (This can be a bit of a
pain since it must exactly match the printed call in both spelling and spacing; and the printed
spacing in may not match what the user typed.)

Three questions of the plot are whether the curve is significantly non-linear, how the curve is
centered and whether we can easily plot it on the hazard as opposed to the log hazard scale. The
first question is answered by the printout, the solution to the others is to use the plot=FALSE
option of termplot, which returns the data points that would be plotted back to the user.

> ptemp <- termplot(mfit, se=TRUE, plot=FALSE)

> attributes(ptemp)

$constant

[1] 3.334793

$names

[1] "sex" "age"

> ptemp$age[1:4,]

x y se

1 34 -2.493101 0.5946620

2 35 -2.365152 0.5301362

3 36 -2.237191 0.4720479

2

4 37 -2.109559 0.4208977

The termplot function depends on a call to predict with type=’terms’, which returns a cen-
tered set of predictions. Like a simple linear model fit, the intercept is a separate term, which
is found in the “constant” attribute above, and each column of the result is centered so that the
average predicted value is zero. Since any given x value may appear multiple times in the data
and thus in the result of predict, and the termplot function removes duplicates, the plot will
normally not be precisely centered at zero.

Now suppose we want to redraw this on log scale with age 50 as the reference, i.e., the risk
is 1 for a 50 year old. Since the Cox model is a relative hazards model we can choose whatever
center we like. (If there were no one of exactly age 50 in the data set the first line below would
need to do an interpolation, e.g. by using the approx function.)

> ageterm <- ptemp$age # this will be a data frame

> center <- with(ageterm, y[x==50])

> ytemp <- ageterm$y + outer(ageterm$se, c(0, -1.96, 1.96), '*')

> matplot(ageterm$x, exp(ytemp - center), log='y',

type='l', lty=c(1,2,2), col=1,

xlab="Age at diagnosis", ylab="Relative death rate")

40 50 60 70 80 90

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

20
.0

0
50

.0
0

Age at diagnosis

R
el

at
iv

e
de

at
h

ra
te

Voila! We now have a plot that is more interpretable. The approach is appropriate for any
term, not just psplines. The above plot uses log scale for the y axis which is appropriate for the
question of whether a non-linear age effect was even necessary for this data set (it is not), one
could remove the log argument to emphasize the Gomperzian effect of age on mortality.

3

2 Monotone splines

Consider the following model using the mgus2 data set.

> fit <- coxph(Surv(futime, death) ~ age + pspline(hgb, 4), mgus2)

> fit

Call:

coxph(formula = Surv(futime, death) ~ age + pspline(hgb, 4),

data = mgus2)

coef se(coef) se2

age 0.05394 0.00337 0.00336

pspline(hgb, 4), linear -0.11579 0.01612 0.01612

pspline(hgb, 4), nonlin

Chisq DF p

age 256.31805 1.00 < 2e-16

pspline(hgb, 4), linear 51.56708 1.00 6.9e-13

pspline(hgb, 4), nonlin 18.77963 3.06 0.00033

Iterations: 6 outer, 16 Newton-Raphson

Theta= 0.942

Degrees of freedom for terms= 1.0 4.1

Likelihood ratio test=420 on 5.06 df, p=0

n=1371 (13 observations deleted due to missingness)

> termplot(fit, se=TRUE, term=2, col.term=1, col.se=1,

xlab="Hemoglobin level")

Low hemoglobin or anemia is a recognized marker of frailty in older age, so the rise in risk for
low levels is not surprising. The rise on the right hand portion of the curve is less believeable —
the normal range of HGB is 12-15.5 for women and 13.5 to 17.5 for men, why would we expect a
rise there? A monotone fit that forces the curve to be horizontal from 14 onward fits well within
the confidence bands, so we might want to force monotonicity.

There are two tools for this within the pspline function. The first is to decrease the overall
degrees of freedom and the second is to use combine option to force equality of selected coeffi-
cients. Start by decreasing the degrees of freedom. The pspline function automatically picks the
number of basis (nterms) to be “sufficiently large” for the given degrees of freedom. We fix it at
a single value for the rest of this example to better isolate the effects of degrees of freedom and
of constraints.

> termplot(fit, se=TRUE, col.term=1, col.se=1, term=2,

xlab="Hemoglobin level", ylim=c(-.4, 1.3))

> df <- c(3, 2.5, 2)

> for (i in 1:3) {

tfit <- coxph(Surv(futime, death) ~ age +

pspline(hgb, df[i], nterm=8), mgus2)

temp <- termplot(tfit, se=FALSE, plot=FALSE, term=2)

lines(temphgbx, temphgby, col=i+1, lwd=2)

4

}

> legend(14, 1, paste("df=", c(4, df)), lty=1, col=1:4, lwd=2)

This has reduced, but not eliminated, the right hand rise at the expense of a less sharp
transition at the value of 14. The combine option makes use of a property of the P-spline basis,
which is that the curve will be monotone if and only if the coefficients are monotone. We can
then use a pool adjacent violators algorithm to sequentially force equality for those coefficients
which go the wrong way. Look at the coefficients for the fit with 2.5 degrees of freedom.

> fit2a <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8), mgus2)

> coef(fit2a)

age ps(hgb)3 ps(hgb)4 ps(hgb)5 ps(hgb)6

0.05399819 -0.26149468 -0.52044496 -0.77438892 -1.04488355

ps(hgb)7 ps(hgb)8 ps(hgb)9 ps(hgb)10 ps(hgb)11

-1.35106599 -1.59448244 -1.61297463 -1.50478222 -1.38368954

ps(hgb)12

-1.26113182

> plot(1:10, coef(fit2a)[-1])

Now force the last 3 to be equal, then the last 4, and see how this changes the fit.

> temp <- c(1:7, 8,8,8)

> fit2b <- coxph(Surv(futime, death) ~ age +

pspline(hgb, 2.5, nterm=8, combine=temp),

data= mgus2)

> temp2 <- c(1:6, 7,7,7,7)

> fit2c <- coxph(Surv(futime, death) ~ age +

pspline(hgb, 2.5, nterm=8, combine=temp2),

data= mgus2)

> matplot(1:10, cbind(coef(fit2a)[-1], coef(fit2b)[temp+1],

coef(fit2c)[temp2+1]), type='b', pch='abc',

xlab="Term", ylab="Pspline coef")

We see that constraining the last four terms along with a degrees of freedom of is almost
enough to force monotonicity; it may be sufficient if our goal is a simple plot for display.

This dance between degrees of freedom, number of terms, and constraints has a component
of artistry. When all three values become large the result will begin to approach a step function,
reminiscent of non-parametric isotonic regression, whereas small values begin to approach a
linear fit. The best compromise of smoothness and constraints will be problem specific.

3 Splines in an interaction

As an example we will use the effect of age on survival in the flchain data set, a population
based sample of subjects from Olmsted County, Minnesota. If we look at a simple model using
age and sex we see that both are very significant.

5

> options(show.signif.stars=FALSE) # display intelligence

> fit1 <- coxph(Surv(futime, death) ~ sex + pspline(age, 3), data=flchain)

> fit1

Call:

coxph(formula = Surv(futime, death) ~ sex + pspline(age, 3),

data = flchain)

coef se(coef) se2 Chisq

sexM 4.09e-01 4.40e-02 4.40e-02 8.64e+01

pspline(age, 3), linear 1.12e-01 2.20e-03 2.20e-03 2.59e+03

pspline(age, 3), nonlin 1.09e+01

DF p

sexM 1.00 <2e-16

pspline(age, 3), linear 1.00 <2e-16

pspline(age, 3), nonlin 2.09 0.0048

Iterations: 7 outer, 20 Newton-Raphson

Theta= 0.989

Degrees of freedom for terms= 1.0 3.1

Likelihood ratio test=2629 on 4.09 df, p=0 n= 7874

> termplot(fit1, term=2, se=TRUE, col.term=1, col.se=1,

ylab="log hazard")

6

50 60 70 80 90 100

−
1

0
1

2
3

4
5

age

lo
g

ha
za

rd

We used a pspline term rather than ns, say, because the printout for a pspline nicely
segregates the linear and non-linear age effects. The non-linearity is not very large, as compared
to the linear portion, but still may be important.

We would like to go forward and fit separate age curves for the males and the females, since
the above fit makes an unwarranted assumption that the male/female ratio of death rates will
be the same at all ages. The primary problem is that a formula of sex * pspline(age) does
not work; the coxph routine is not clever enough to do the right thing automatically. (Perhaps
some future version will be sufficiently intelligent, but don’t hold your breath). If we were using
regression splines instead, e.g. ns(age, df=4), a simple call coxph routine using the interaction
term would succeed, but then termplot would fall short. The solution below suffices for all cases.

First, we need to create our own dummy variables to handle the interaction.

> agem <- with(flchain, ifelse(sex=="M", age, 60))

> agef <- with(flchain, ifelse(sex=="F", age, 60))

> fit2 <- coxph(Surv(futime, death) ~ sex + pspline(agef, df=3)

+ pspline(agem, df=3), data=flchain)

> anova(fit2, fit1)

Analysis of Deviance Table

Cox model: response is Surv(futime, death)

Model 1: ~ sex + pspline(agef, df = 3) + pspline(agem, df = 3)

Model 2: ~ sex + pspline(age, 3)

loglik Chisq Df P(>|Chi|)

7

1 -17551

2 -17554 5.8211 2.8583 0.1096

The gain in this particular problem is not great, but we will forge ahead. You might well
ask why we used 60 as a dummy value of agem for the females instead of 0? There is nothing
special about the choice, and any value within the range of ages would do as well, though I try
to pick one where the standard errors of the curves are not outrageous. If a value of 0 is used
it forces the pspline function to create a basis set that includes all the empty space between 0
and 50, and do predictions at 0; these last can become numerically unstable leading to errors or
incorrect values.

The Cox model deals with relative hazards, when doing a plot we will usually want to specify
who our reference is. By default the termplot function uses an average reference, that is, any
plot will be centered to have an average log hazard of 0. In this case, we decided to use 65 year
old females as our reference, with all of the hazards relative to them.

> # predictions

> pterm <- termplot(fit2, term=2:3, se=TRUE, plot=FALSE)

> # reference

> refdata <- data.frame(sex=c('F', 'M'), agef=c(65, 60), agem=c(60,65))

> pred.ref <- predict(fit2, newdata=refdata, type="lp")

> # females

> tempf <- pterm$agef$y + outer(pterm$agef$se, c(0, -1.96, 1.96))

> frow <- which(pterm$agef$x == 65)

> tempf <- tempf - tempf[frow,1] # shift curves

> # males

> tempm <- pterm$agem$y + outer(pterm$agem$se, c(0, -1.96, 1.96))

> mrow <- which(pterm$agem$x == 65)

> tempm <- tempm + diff(pred.ref) - tempm[mrow,1]

> # plot

> matplot(pterm$agef$x, exp(tempf), log='y', col=1,

lty=c(1,2,2), type='l', lwd=c(2,1,1),

xlab="Age", ylab="Relative risk of death")

> matlines(pterm$agem$x, exp(tempm), log='y',

col=2, lwd=c(2,1,1), lty=c(1,2,2))

> legend(80, 1, c("Female", "Male"), lty=1, lwd=2, col=1:2, bty='n')

8

50 60 70 80 90 100

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

Age

R
el

at
iv

e
ris

k
of

 d
ea

th

Female
Male

1. The termplot routine is used to get the data points for the plot, without executing a plot,
by use of the plot=FALSE argument. The result is a list with one element per term; each
element of the list contains x, y, and se components.

2. We had decided to center the female curve at age 65, risk =1. The relative offset for the
male curve can be derived directly from fit2 by adding up the right coefficients, and I
used to do it that way but would get it wrong one time out of two. So instead use the
predict routine to get predicted log hazards for males and females at a particular age.
This tells me how far apart the curves should be at that point. We force the females to go
through 0, which is exp(0) =1 on the hazard scale.

3. Get the predicted curve and confidence bands for the females as a matrix tempf, and then
shift them by subtracting the value for a 65 year old female. Do the same for males, plus
adding in the curve separation at age 65 from pred.ref.

4. The male and female portions don’t have quite the same set of age values, there are no 95
year old males in the data set for example, so the plot needs to be done in two steps.

The final curves for males and female are not quite parallel. One thing the plot does not
display is that the spacing between the male and female points also has a standard error. This
moves the entire bundle of three red curves up and down. It is not clear how best to add this
information into the plot. For questions of parallelism and shape, as here, it seemed best to
ignore it, which is what the termplot function also does. If someone were reading individual
male/female differences off the plot a different choice would be appropriate.

9

