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Abstract

The RcppEigen package provides access from R (R Core Team 2017a) to the Eigen
(Guennebaud, Jacob et al. 2012) C++ template library for numerical linear algebra. Rcpp
(Eddelbuettel et al. 2017a; Eddelbuettel 2013) classes and specializations of the C++
templated functions as and wrap from Rcpp provide the “glue” for passing objects from
R to C++ and back. Several introductory examples are presented. This is followed by
an in-depth discussion of various available approaches for solving least-squares problems,
including rank-revealing methods, concluding with an empirical run-time comparison.
Last but not least, sparse matrix methods are discussed.
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1. Introduction

Linear algebra is an essential building block of statistical computing. Operations such as
matrix decompositions, linear program solvers, and eigenvalue/eigenvector computations are
used in many estimation and analysis routines. As such, libraries supporting linear algebra
have long been provided by statistical programmers for different programming languages and
environments. Because it is object-oriented, C++, one of the central modern languages for
numerical and statistical computing, is particularly effective at representing matrices, vectors
and decompositions, and numerous class libraries providing linear algebra routines have been
written over the years.

As both the C++ language and standards have evolved (Meyers 2005, 1995; ISO/IEC 2011),
so have the compilers implementing the language. Relatively modern language constructs such
as template meta-programming are particularly useful because they provide overloading of
operations (allowing expressive code in the compiled language similar to what can be done in
scripting languages) and can shift some of the computational burden from the run-time to the
compile-time. (A more detailed discussion of template meta-programming is, however, beyond
the scope of this paper). Veldhuizen (1998) provided an early and influential implementation
of numerical linear algebra classes that already demonstrated key features of this approach.

http://www.jstatsoft.org/v52/i05/
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Its usage was held back at the time by the limited availability of compilers implementing all
the necessary features of the C++ language.

This situation has greatly improved over the last decade, and many more libraries have been
made available. One such C++ library is Eigen by Guennebaud, Jacob et al. (2012) which
started as a sub-project to KDE (a popular Linux desktop environment), initially focussing
on fixed-size matrices to represent projections in a visualization application. Eigen grew from
there and has over the course of about a decade produced three major releases with Eigen3
being the current major version. To check the minor and patch version numbers, load the
RcppEigen package and call

R> .Call("eigen_version", FALSE)

major minor patch

3 1 1

Eigen is of interest as the R system for statistical computation and graphics (R Core Team
2017a) is itself easily extensible. This is particular true via the C language that most of R’s
compiled core parts are written in, but also for the C++ language which can interface with
C-based systems rather easily. The manual “Writing R Extensions” (R Core Team 2017b) is
the basic reference for extending R with either C or C++.

The Rcpp package by Eddelbuettel and François (2011); Eddelbuettel et al. (2017a) facilitates
extending R with C++ code by providing seamless object mapping between both languages.
As stated in the Rcpp (Eddelbuettel et al. 2017a) vignette, “Extending Rcpp” as well as in
Eddelbuettel (2013)

Rcpp facilitates data interchange between R and C++ through the templated
functions Rcpp::as (for conversion of objects from R to C++) and Rcpp::wrap

(for conversion from C++ to R).

The RcppEigen package provides the header files composing the Eigen C++ template library,
along with implementations of Rcpp::as and Rcpp::wrap for the C++ classes defined in
Eigen.

The Eigen classes themselves provide high-performance, versatile and comprehensive repre-
sentations of dense and sparse matrices and vectors, as well as decompositions and other
functions to be applied to these objects. The next section introduces some of these classes
and shows how to interface to them from R.

2. Eigen classes

Eigen is a C++ template library providing classes for many forms of matrices, vectors, arrays
and decompositions. These classes are flexible and comprehensive allowing for both high
performance and well structured code representing high-level operations. C++ code based on
Eigen is often more like R code, working on the “whole object”, than like compiled code in
other languages where operations often must be coded in loops.

As in many C++ template libraries using template meta-programming (Abrahams and Gur-
tovoy 2004), the templates themselves can be very complicated. However, Eigen provides
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R object type Eigen class typedef

numeric matrix MatrixXd

integer matrix MatrixXi

complex matrix MatrixXcd

numeric vector VectorXd

integer vector VectorXi

complex vector VectorXcd

Matrix::dgCMatrix SparseMatrix<double>

Table 1: Correspondence between R matrix and vector types and classes in the Eigen names-
pace.

typedefs for common classes that correspond to R matrices and vectors, as shown in Table 1,
and this paper will use these typedefs.

Here, Vector and Matrix describe the dimension of the object. The X signals that these
are dynamically-sized objects (as opposed to fixed-size matrices such as 3 × 3 matrices also
available in Eigen). Lastly, the trailing characters i, d and cd denote, respectively, storage
types integer, double and complex double.

The C++ classes shown in Table 1 are in the Eigen namespace, which means that they must
be written as Eigen::MatrixXd. However, if one prefaces the use of these class names with
a declaration like

using Eigen::MatrixXd;

then one can use these names without the namespace qualifier.

2.1. Mapped matrices in Eigen

Storage for the contents of matrices from the classes shown in Table 1 is allocated and con-
trolled by the class constructors and destructors. Creating an instance of such a class from an
R object involves copying its contents. An alternative is to have the contents of the R matrix
or vector mapped to the contents of the object from the Eigen class. For dense matrices
one can use the Eigen templated class Map, and for sparse matrices one can deploy the Eigen
templated class MappedSparseMatrix.

One must, of course, be careful not to modify the contents of the R object in the C++ code.
A recommended practice is always to declare mapped objects as const.

2.2. Arrays in Eigen

For matrix and vector classes Eigen overloads the ‘*’ operator as matrix multiplication.
Occasionally component-wise operations instead of matrix operations are desired, for which
the Array templated classes are used in Eigen. Switching back and forth between matrices or
vectors and arrays is usually done via the array() method for matrix or vector objects and
the matrix() method for arrays.

2.3. Structured matrices in Eigen
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Eigen provides classes for matrices with special structure such as symmetric matrices, triangu-
lar matrices and banded matrices. For dense matrices, these special structures are described
as “views”, meaning that the full dense matrix is stored but only part of the matrix is used
in operations. For a symmetric matrix one must specify whether the lower triangle or the
upper triangle is to be used as the contents, with the other triangle defined by the implicit
symmetry.

3. Some simple examples

C++ functions to perform simple operations on matrices or vectors can follow a pattern of:

1. Map the R objects passed as arguments into Eigen objects.

2. Create the result.

3. Return Rcpp::wrap applied to the result.

An idiom for the first step is

using Eigen::Map;

using Eigen::MatrixXd;

using Rcpp::as;

const Map<MatrixXd> A(as<Map<MatrixXd> >(AA));

where AA is the name of the R object (of type SEXP in C and C++) passed to the C++
function.

An alternative to the using declarations is to declare a typedef as in

typedef Eigen::Map<Eigen::MatrixXd> MapMatd;

const MapMatd A(Rcpp::as<MapMatd>(AA));

The cxxfunction function from the inline package (Sklyar, Murdoch, Smith, Eddelbuettel,
and François 2015) for R and its RcppEigen plugin provide a convenient method of developing
and debugging the C++ code. For actual production code one generally incorporates the C++
source code files in a package and includes the line LinkingTo: Rcpp, RcppEigen in the
package’s DESCRIPTION file. The RcppEigen.package.skeleton function provides a quick
way of generating the skeleton of a package that will use RcppEigen.

The cxxfunction with the "Rcpp" or "RcppEigen" plugins has the as and wrap functions
already defined as Rcpp::as and Rcpp::wrap. In the examples below these declarations are
omitted. It is important to remember that they are needed in actual C++ source code for a
package.

The first few examples are simply for illustration as the operations shown could be more
effectively performed directly in R. Finally, the results from Eigen are compared to those
from the direct R results.

3.1. Transpose of an integer matrix

The next R code snippet creates a simple matrix of integers
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using Eigen::Map;

using Eigen::MatrixXi;

// Map the integer matrix AA from R
const Map<MatrixXi> A(as<Map<MatrixXi> >(AA));

// evaluate and return the transpose of A
const MatrixXi At(A.transpose());

return wrap(At);

Figure 1: transCpp: Transpose a matrix of integers.

R> (A <- matrix(1:6, ncol = 2))

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

R> str(A)

int [1:3, 1:2] 1 2 3 4 5 6

and, in Figure 1, the transpose() method for the Eigen::MatrixXi class is used to re-
turn the transpose of the supplied matrix. The R matrix in the SEXP AA is first mapped to
an Eigen::MatrixXi object, and then the matrix At is constructed from its transpose and
returned to R.

The R snippet below compiles and links the C++ code segment. The actual work is done
by the function cxxfunction from the inline package which compiles, links and loads code
written in C++ and supplied as a character variable. This frees the user from having to
know about compiler and linker details and options, which makes “exploratory programming”
much easier. Here the program piece to be compiled is stored as a character variable named
transCpp, and cxxfunction creates an executable function which is assigned to ftrans.
This new function is used on the matrix A shown above, and one can check that it works as
intended by comparing the output to an explicit transpose of the matrix argument.

R> ftrans <- cxxfunction(signature(AA = "matrix"), transCpp,

+ plugin = "RcppEigen")

R> (At <- ftrans(A))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

R> stopifnot(all.equal(At, t(A)))

For numeric or integer matrices the adjoint() method is equivalent to the transpose()

method. For complex matrices, the adjoint is the conjugate of the transpose. In keeping with
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typedef Eigen::Map<Eigen::MatrixXi> MapMati;

const MapMati B(as<MapMati>(BB));
const MapMati C(as<MapMati>(CC));
return List::create(Named("B %*% C") = B * C,

Named("crossprod(B, C)") = B.adjoint() * C);

Figure 2: prodCpp: Product and cross-product of two matrices.

the conventions in the Eigen documentation the adjoint() method is used in what follows
to create the transpose of numeric or integer matrices.

3.2. Products and cross-products

As mentioned in Section 2.2, the ‘*’ operator is overloaded as matrix multiplication for the
various matrix and vector classes in Eigen. The C++ code in Figure 2 produces a list contain-
ing both the product and cross-product (in the sense of the R function call crossproduct(A,
B) evaluating A>B) of its two arguments

R> fprod <- cxxfunction(signature(BB = "matrix", CC = "matrix"),

+ prodCpp, "RcppEigen")

R> B <- matrix(1:4, ncol = 2)

R> C <- matrix(6:1, nrow = 2)

R> str(fp <- fprod(B, C))

List of 2

$ B %*% C : int [1:2, 1:3] 21 32 13 20 5 8

$ crossprod(B, C): int [1:2, 1:3] 16 38 10 24 4 10

R> stopifnot(all.equal(fp[[1]], B %*% C), all.equal(fp[[2]], crossprod(B, C)))

Note that the create class method for Rcpp::List implicitly applies Rcpp::wrap to its
arguments.

3.3. Crossproduct of a single matrix

As shown in the last example, the R function crossprod calculates the product of the trans-
pose of its first argument with its second argument. The single argument form, crossprod(X),
evaluates X>X. One could, of course, calculate this product as

t(X) %*% X

but crossprod(X) is roughly twice as fast because the result is known to be symmetric and
only one triangle needs to be calculated. The function tcrossprod evaluates crossprod(t(X))
without actually forming the transpose.

To express these calculations in Eigen, a SelfAdjointView—which is a dense matrix of which
only one triangle is used, the other triangle being inferred from the symmetry—is created.
(The characterization “self-adjoint” is equivalent to symmetric for non-complex matrices.)
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using Eigen::Map;

using Eigen::MatrixXi;

using Eigen::Lower;

const Map<MatrixXi> A(as<Map<MatrixXi> >(AA));
const int m(A.rows()), n(A.cols());

MatrixXi AtA(MatrixXi(n, n).setZero().

selfadjointView<Lower>().rankUpdate(A.adjoint()));
MatrixXi AAt(MatrixXi(m, m).setZero().

selfadjointView<Lower>().rankUpdate(A));

return List::create(Named("crossprod(A)") = AtA,

Named("tcrossprod(A)") = AAt);

Figure 3: crossprodCpp: Cross-product and transposed cross-product of a single matrix.

The Eigen class name is SelfAdjointView. The method for general matrices that produces
such a view is called selfadjointView. Both require specification of either the Lower or
Upper triangle.

For triangular matrices the class is TriangularView and the method is triangularView.
The triangle can be specified as Lower, UnitLower, StrictlyLower, Upper, UnitUpper or
StrictlyUpper.

For self-adjoint views the rankUpdate method adds a scalar multiple of AA> to the current
symmetric matrix. The scalar multiple defaults to 1. The code in Figure 3 produces both
A>A and AA> from a matrix A.

R> fcprd <- cxxfunction(signature(AA = "matrix"), crossprodCpp, "RcppEigen")

R> str(crp <- fcprd(A))

List of 2

$ crossprod(A) : int [1:2, 1:2] 14 32 32 77

$ tcrossprod(A): int [1:3, 1:3] 17 22 27 22 29 36 27 36 45

R> stopifnot(all.equal(crp[[1]], crossprod(A)),

+ all.equal(crp[[2]], tcrossprod(A)))

To some, the expressions in Figure 3 to construct AtA and AAt are compact and elegant. To
others they are hopelessly confusing. If you find yourself in the latter group, you just need
to read the expression left to right. So, for example, we construct AAt by creating a general
integer matrix of size m × m (where A is m × n), ensuring that all its elements are zero,
regarding it as a self-adjoint (i.e., symmetric) matrix using the elements in the lower triangle,
then adding AA> to it and converting back to a general matrix form (i.e., the strict lower
triangle is copied into the strict upper triangle).

In more detail:

1. MatrixXi(n, n) creates an n× n integer matrix with arbitrary contents
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using Eigen::LLT;

using Eigen::Lower;

using Eigen::Map;

using Eigen::MatrixXd;

using Eigen::MatrixXi;

using Eigen::Upper;

using Eigen::VectorXd;

typedef Map<MatrixXd> MapMatd;

typedef Map<MatrixXi> MapMati;

typedef Map<VectorXd> MapVecd;

inline MatrixXd AtA(const MapMatd& A) {

int n(A.cols());

return MatrixXd(n,n).setZero().selfadjointView<Lower>()
.rankUpdate(A.adjoint());

}

Figure 4: The contents of the character vector, incl, that will preface C++ code segments
that follow.

2. .setZero() zeros out the contents of the matrix

3. .selfAdjointView<Lower>() causes what follows to treat the matrix as a symmetric
matrix in which only the lower triangle is used, the strict upper triangle being inferred
by symmetry

4. .rankUpdate(A) forms the sum B +AA> where B is the symmetric matrix of zeros
created in the previous steps.

The assignment of this symmetric matrix to the (general) MatrixXi object AAt causes the
result to be symmetrized during the assignment.

For these products one could define the symmetric matrix from either the lower triangle or
the upper triangle as the result will be symmetrized before it is returned.

To cut down on repetition of using statements we gather them in a character variable, incl,
that will be given as the includes argument in the calls to cxxfunction. We also define a
utility function, AtA, that returns the crossproduct matrix as shown in Figure 4

3.4. Cholesky decomposition of the crossprod

The Cholesky decomposition of the positive-definite, symmetric matrix, A, can be written in
several forms. Numerical analysts define the “LLt” form as the lower triangular matrix, L,
such that A = LL> and the “LDLt” form as a unit lower triangular matrix L and a diagonal
matrix D with positive diagonal elements such that A = LDL>. Statisticians often write
the decomposition as A = R>R where R is an upper triangular matrix. Of course, this R is
simply the transpose of L from the “LLt” form.

The templated Eigen classes for the LLt and LDLt forms are called LLT and LDLT and the cor-
responding methods are .llt() and .ldlt(). Because the Cholesky decomposition involves
taking square roots, we pass a numeric matrix, A, not an integer matrix.
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const LLT<MatrixXd> llt(AtA(as<MapMatd>(AA)));
return List::create(Named("L") = MatrixXd(llt.matrixL()),

Named("R") = MatrixXd(llt.matrixU()));

Figure 5: cholCpp: Cholesky decomposition of a cross-product.

R> storage.mode(A) <- "double"

R> fchol <- cxxfunction(signature(AA = "matrix"), cholCpp, "RcppEigen", incl)

R> (ll <- fchol(A))

$L

[,1] [,2]

[1,] 3.74166 0.00000

[2,] 8.55236 1.96396

$R

[,1] [,2]

[1,] 3.74166 8.55236

[2,] 0.00000 1.96396

R> stopifnot(all.equal(ll[[2]], chol(crossprod(A))))

3.5. Determinant of the cross-product matrix

The “D-optimal” criterion for experimental design chooses the design that maximizes the
determinant, |X>X|, for the n×p model matrix (or Jacobian matrix), X. The determinant,
|L|, of the p× p lower Cholesky factor L, defined so that LL> = X>X, is the product of its
diagonal elements, as is the case for any triangular matrix. By the properties of determinants,

|X>X| = |LL>| = |L| |L>| = |L|2

Alternatively, if using the “LDLt” decomposition, LDL> = X>X where L is unit lower
triangular and D is diagonal then |X>X| is the product of the diagonal elements of D.
Because it is known that the diagonal elements ofD must be non-negative, one often evaluates
the logarithm of the determinant as the sum of the logarithms of the diagonal elements of D.
Several options are shown in Figure 6.

R> fdet <- cxxfunction(signature(AA = "matrix"), cholDetCpp, "RcppEigen",

+ incl)

R> unlist(ll <- fdet(A))

d1 d2 ld

54.00000 54.00000 3.98898

Note the use of the array() method in the calculation of the log-determinant. Because the
log() method applies to arrays, not to vectors or matrices, an array must be created from
Dvec before applying the log() method.
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const MatrixXd ata(AtA(as<MapMatd>(AA)));
const double detL(MatrixXd(ata.llt().matrixL()).diagonal().prod());

const VectorXd Dvec(ata.ldlt().vectorD());

return List::create(Named("d1") = detL * detL,

Named("d2") = Dvec.prod(),

Named("ld") = Dvec.array().log().sum());

Figure 6: cholDetCpp: Determinant of a cross-product using the “LLt” and “LDLt” forms of
the Cholesky decomposition.

4. Least squares solutions

A common operation in statistical computing is calculating a least squares solution, β̂, defined
as

β̂ = argmin
β
‖y −Xβ‖2

where the model matrix, X, is n×p (n ≥ p) and y is an n-dimensional response vector. There
are several ways, based on matrix decompositions, to determine such a solution. Earlier, two
forms of the Cholesky decomposition were discussed: “LLt” and “LDLt”, which can both be
used to solve for β̂. Other decompositions that can be used are the QR decomposition, with
or without column pivoting, the singular value decomposition and the eigendecomposition of
a symmetric matrix.

Determining a least squares solution is relatively straightforward. However, statistical com-
puting often requires additional information, such as the standard errors of the coefficient

estimates. Calculating these involves evaluating the diagonal elements of
(
X>X

)−1
and the

residual sum of squares, ‖y −Xβ̂‖2.

4.1. Least squares using the “LLt” Cholesky

Figure 7 shows a calculation of the least squares coefficient estimates (betahat) and the
standard errors (se) through an “LLt” Cholesky decomposition of the crossproduct of the
model matrix, X. Next, the results from this calculation are compared to those from the
lm.fit function in R (lm.fit is the workhorse function called by lm once the model matrix
and response have been evaluated).

R> lltLS <- cxxfunction(signature(XX = "matrix", yy = "numeric"), lltLSCpp,

+ "RcppEigen", incl)

R> data("trees", package = "datasets")

R> str(lltFit <- with(trees, lltLS(cbind(1, log(Girth)), log(Volume))))

List of 7

$ coefficients : num [1:2] -2.35 2.2

$ fitted.values: num [1:31] 2.3 2.38 2.43 2.82 2.86 ...

$ residuals : num [1:31] 0.0298 -0.0483 -0.1087 -0.0223 0.0727 ...

$ s : num 0.115

$ df.residual : int 29
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const MapMatd X(as<MapMatd>(XX));
const MapVecd y(as<MapVecd>(yy));
const int n(X.rows()), p(X.cols());

const LLT<MatrixXd> llt(AtA(X));

const VectorXd betahat(llt.solve(X.adjoint() * y));

const VectorXd fitted(X * betahat);

const VectorXd resid(y - fitted);

const int df(n - p);

const double s(resid.norm() / std::sqrt(double(df)));

const VectorXd se(s * llt.matrixL().solve(MatrixXd::Identity(p, p))

.colwise().norm());

return List::create(Named("coefficients") = betahat,

Named("fitted.values") = fitted,

Named("residuals") = resid,

Named("s") = s,

Named("df.residual") = df,

Named("rank") = p,

Named("Std. Error") = se);

Figure 7: lltLSCpp: Least squares using the Cholesky decomposition.

$ rank : int 2

$ Std. Error : num [1:2] 0.2307 0.0898

R> str(lmFit <- with(trees, lm.fit(cbind(1, log(Girth)), log(Volume))))

List of 8

$ coefficients : Named num [1:2] -2.35 2.2

..- attr(*, "names")= chr [1:2] "x1" "x2"

$ residuals : num [1:31] 0.0298 -0.0483 -0.1087 -0.0223 0.0727 ...

$ effects : Named num [1:31] -18.2218 2.8152 -0.1029 -0.0223 0.0721 ...

..- attr(*, "names")= chr [1:31] "x1" "x2" "" "" ...

$ rank : int 2

$ fitted.values: num [1:31] 2.3 2.38 2.43 2.82 2.86 ...

$ assign : NULL

$ qr :List of 5

..$ qr : num [1:31, 1:2] -5.57 0.18 0.18 0.18 0.18 ...

..$ qraux: num [1:2] 1.18 1.26

..$ pivot: int [1:2] 1 2

..$ tol : num 1e-07

..$ rank : int 2

..- attr(*, "class")= chr "qr"

$ df.residual : int 29

R> for(nm in c("coefficients", "residuals", "fitted.values", "rank"))

+ stopifnot(all.equal(lltFit[[nm]], unname(lmFit[[nm]])))

R> stopifnot(all.equal(lltFit[["Std. Error"]],

+ unname(coef(summary(lm(log(Volume) ~ log(Girth), trees)))[,2])))
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using Eigen::HouseholderQR;

const HouseholderQR<MatrixXd> QR(X);

const VectorXd betahat(QR.solve(y));

const VectorXd fitted(X * betahat);

const int df(n - p);

const VectorXd se(QR.matrixQR().topRows(p).triangularView<Upper>()
.solve(MatrixXd::Identity(p,p)).rowwise().norm());

Figure 8: QRLSCpp: Least squares using the unpivoted QR decomposition.

There are several aspects of the C++ code in Figure 7 worth mentioning. The solve method

for the LLT object evaluates, in this case,
(
X>X

)−1
X>y but without actually evaluating the

inverse. The calculation of the residuals, y− ŷ, can be written, as in R, as y - fitted. (But
note that Eigen classes do not have a “recycling rule” as in R. That is, the two vector operands
must have the same length.) The norm() method evaluates the square root of the sum of

squares of the elements of a vector. Although one does not explicitly evaluate
(
X>X

)−1
one

does evaluate L−1 to obtain the standard errors. Note also the use of the colwise() method
in the evaluation of the standard errors. It applies a method to the columns of a matrix,
returning a vector. The Eigen colwise() and rowwise() methods are similar in effect to the
apply function in R.

In the descriptions of other methods for solving least squares problems, much of the code
parallels that shown in Figure 7. The redundant parts are omitted, and only the evaluation
of the coefficients, the rank and the standard errors is shown. Actually, the standard errors
are calculated only up to the scalar multiple of s, the residual standard error, in these code
fragments. The calculation of the residuals and s and the scaling of the coefficient standard
errors is the same for all methods. (See the files fastLm.h and fastLm.cpp in the RcppEigen
source package for details.)

4.2. Least squares using the unpivoted QR decomposition

A QR decomposition has the form

X = QR = Q1R1

where Q is an n×n orthogonal matrix, which means that Q>Q = QQ> = In, and the n× p
matrix R is zero below the main diagonal. The n × p matrix Q1 is the first p columns of
Q and the p × p upper triangular matrix R1 is the top p rows of R. There are three Eigen
classes for the QR decomposition: HouseholderQR provides the basic QR decomposition
using Householder transformations, ColPivHouseholderQR incorporates column pivots and
FullPivHouseholderQR incorporates both row and column pivots.

Figure 8 shows a least squares solution using the unpivoted QR decomposition. The calcu-
lations in Figure 8 are quite similar to those in Figure 7. In fact, if one had extracted the
upper triangular factor (the matrixU() method) from the LLT object in Figure 7, the rest of
the code would be nearly identical.
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4.3. Handling the rank-deficient case

One important consideration when determining least squares solutions is whether rank(X) is
p, a situation described by saying that X has “full column rank”. When X does not have full
column rank it is said to be “rank deficient”.

Although the theoretical rank of a matrix is well-defined, its evaluation in practice is not. At
best one can compute an effective rank according to some tolerance. Decompositions that
allow to estimation of the rank of the matrix in this way are said to be “rank-revealing”.

Because the model.matrix function in R does a considerable amount of symbolic analysis
behind the scenes, one usually ends up with full-rank model matrices. The common cases
of rank-deficiency, such as incorporating both a constant term and a full set of indicators
columns for the levels of a factor, are eliminated. Other, more subtle, situations will not be
detected at this stage, however. A simple example occurs when there is a “missing cell” in a
two-way layout and the interaction of the two factors is included in the model.

R> dd <- data.frame(f1 = gl(4, 6, labels = LETTERS[1:4]),

+ f2 = gl(3, 2, labels = letters[1:3]))[-(7:8), ]

R> xtabs(~ f2 + f1, dd)

f1

f2 A B C D

a 2 0 2 2

b 2 2 2 2

c 2 2 2 2

R> mm <- model.matrix(~ f1 * f2, dd)

R> kappa(mm)

[1] 4.30923e+16

This yields a large condition number, indicating rank deficiency. Alternatively, the reciprocal
condition number can be evaluated.

R> rcond(mm)

[1] 2.3206e-17

R> (c(rank = qr(mm)$rank, p = ncol(mm)))

rank p

11 12

R> set.seed(1)

R> dd$y <- mm %*% seq_len(ncol(mm)) + rnorm(nrow(mm), sd = 0.1)

R> fm1 <- lm(y ~ f1 * f2, dd)

R> writeLines(capture.output(print(summary(fm1),

+ signif.stars = FALSE))[9:22])
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Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9779 0.0582 16.8 3.4e-09

f1B 12.0381 0.0823 146.3 < 2e-16

f1C 3.1172 0.0823 37.9 5.2e-13

f1D 4.0685 0.0823 49.5 2.8e-14

f2b 5.0601 0.0823 61.5 2.6e-15

f2c 5.9976 0.0823 72.9 4.0e-16

f1B:f2b -3.0148 0.1163 -25.9 3.3e-11

f1C:f2b 7.7030 0.1163 66.2 1.2e-15

f1D:f2b 8.9643 0.1163 77.1 < 2e-16

f1B:f2c NA NA NA NA

f1C:f2c 10.9613 0.1163 94.2 < 2e-16

f1D:f2c 12.0411 0.1163 103.5 < 2e-16

The lm function for fitting linear models in R uses a rank-revealing form of the QR decompo-
sition. When the model matrix is determined to be rank deficient, according to the threshold
used in R’s qr function, the model matrix is reduced to rank (X) columns by pivoting selected
columns (those that are apparently linearly dependent on columns to their left) to the right
hand side of the matrix. A solution for this reduced model matrix is determined and the
coefficients and standard errors for the redundant columns are flagged as missing.

An alternative approach is to evaluate the “pseudo-inverse” of X from the singular value
decomposition (SVD) of X or the eigendecomposition of X>X. The SVD is of the form

X = UDV > = U1D1V
>

where U is an orthogonal n×n matrix and U1 is its leftmost p columns, D is n× p and zero
off the main diagonal so that D1 is a p×p diagonal matrix with non-increasing, non-negative
diagonal elements, and V is a p × p orthogonal matrix. The pseudo-inverse of D1, written
D+

1 is a p × p diagonal matrix whose first r = rank(X) diagonal elements are the inverses
of the corresponding diagonal elements of D1 and whose last p − r diagonal elements are
zero. The tolerance for determining if an element of the diagonal of D1 is considered to be
(effectively) zero is a multiple of the largest singular value (i.e., the (1, 1) element of D). The
pseudo-inverse, X+, of X is defined as

X+ = V D+
1 U

>
1 .

In Figure 9 a utility function, Dplus, is defined to return the diagonal of the pseudo-inverse,
D+

1 , as an array, given the singular values (the diagonal of D1) as an array. Calculation of the
maximum element of d (the method is called .maxCoeff()) and the use of a threshold()

function provides greater generality for the function. It can be used on the eigenvalues of
X>X, as shown in Section 4.5, even though these are returned in increasing order, as opposed
to the decreasing order of the singular values.

4.4. Least squares using the SVD

With these definitions the code for least squares using the singular value decomposition can be
written as in Figure 10. Even in the rank-deficient case this code will produce a complete set
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inline ArrayXd Dplus(const ArrayXd& d) {

ArrayXd di(d.size());

double comp(d.maxCoeff() * threshold());

for (int j = 0; j < d.size(); ++j) di[j] = (d[j] < comp) ? 0. : 1./d[j];

return di;

}

Figure 9: DplusCpp: Create the diagonal d+ of the pseudo-inverse, D+
1 , from the array of

singular values, d.

of coefficients and their standard errors. The user must be careful to check if the computed
rank is less than p, the number of columns in X, in which case the estimated coefficients
are just one of an infinite number of coefficient vectors that produce the same fitted values.
It happens that the solution from this pseudo-inverse is the minimum norm solution (in the
sense that ‖β‖2 is minimized among those β that minimize ‖y −Xβ‖2).

The standard errors of the coefficient estimates in the rank-deficient case must be interpreted
carefully. The solution with one or more missing coefficients, as returned by the lm.fit

function in R and by the column-pivoted QR decomposition described in Section 4.6, does
not provide standard errors for the missing coefficients. That is, both the coefficient and its
standard error are returned as NA because the least squares solution is performed on a reduced
model matrix. It is also true that the solution returned by the SVD method is with respect
to a reduced model matrix but the p coefficient estimates and their p standard errors don’t
show this. They are, in fact, linear combinations of a set of r coefficient estimates and their
standard errors.

const Eigen::JacobiSVD<MatrixXd>
UDV(X.jacobiSvd(Eigen::ComputeThinU|Eigen::ComputeThinV));

const ArrayXd Dp(Dplus(UDV.singularValues()));

const int r((Dp > 0).count());

const MatrixXd VDp(UDV.matrixV() * Dp.matrix().asDiagonal());

const VectorXd betahat(VDp * UDV.matrixU().adjoint() * y);

const VectorXd se(s * VDp.rowwise().norm());

Figure 10: SVDLSCpp: Least squares using the SVD.
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const Eigen::SelfAdjointEigenSolver<MatrixXd> VLV(AtA(X));

const ArrayXd Dp(Dplus(eig.eigenvalues()).sqrt());

const int r((Dp > 0).count());

const MatrixXd VDp(VLV.eigenvectors() * Dp.matrix().asDiagonal());

const VectorXd betahat(VDp * VDp.adjoint() * X.adjoint() * y);

const VectorXd se(s * VDp.rowwise().norm());

Figure 11: SymmEigLSCpp: Least squares using the eigendecomposition.

4.5. Least squares using the eigendecomposition

The eigendecomposition of X>X is defined as

X>X = V ΛV >

where V , the matrix of eigenvectors, is a p× p orthogonal matrix and Λ is a p× p diagonal
matrix with non-decreasing, non-negative diagonal elements, called the eigenvalues of X>X.
When the eigenvalues are distinct, this V is the same (up to reordering of the columns) as
that in the SVD and the eigenvalues of X>X are the (reordered) squares of the singular
values of X.

With these definitions one can adapt much of the code from the SVD method for the eigen-
decomposition, as shown in Figure 11.

4.6. Least squares using the column-pivoted QR decomposition

The column-pivoted QR decomposition provides results similar to those from R in both the
full-rank and the rank-deficient cases. The decomposition is of the form

XP = QR = Q1R1

where, as before, Q is n× n and orthogonal and R is n× p and upper triangular. The p× p
matrix P is a permutation matrix. That is, its columns are a permutation of the columns of
Ip. It serves to reorder the columns ofX so that the diagonal elements ofR are non-increasing
in magnitude.

An instance of the class Eigen::ColPivHouseholderQR has a rank() method returning the
computational rank of the matrix. When X is of full rank one can use essentially the same
code as in the unpivoted decomposition except that one must reorder the standard errors.
When X is rank-deficient, the coefficients and standard errors are evaluated for the leading
r columns of XP only.

In the rank-deficient case the straightforward calculation of the fitted values, as Xβ̂, cannot
be used because some of the estimated coefficients, β̂, are NA so the product will be a vector of
NA’s. One could do some complicated rearrangement of the columns of X and the coefficient
estimates but it is conceptually (and computationally) easier to employ the relationship

ŷ = Q1Q
>
1 y = Q

[
Ir 0
0 0

]
Q>y

The vector Q>y is called the “effects” vector in R.

Just to check that the code in Figure 12 does indeed provide the desired answer
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typedef Eigen::ColPivHouseholderQR<MatrixXd> CPivQR;

typedef CPivQR::PermutationType Permutation;

const CPivQR PQR(X);

const Permutation Pmat(PQR.colsPermutation());

const int r(PQR.rank());

VectorXd betahat, fitted, se;

if (r == X.cols()) { // full rank case
betahat = PQR.solve(y);

fitted = X * betahat;

se = Pmat * PQR.matrixQR().topRows(p).triangularView<Upper>()
.solve(MatrixXd::Identity(p, p)).rowwise().norm();

} else {

MatrixXd Rinv(PQR.matrixQR().topLeftCorner(r, r)

.triangularView<Upper>().solve(MatrixXd::Identity(r, r)));

VectorXd effects(PQR.householderQ().adjoint() * y);

betahat.fill(::NA_REAL);

betahat.head(r) = Rinv * effects.head(r);

betahat = Pmat * betahat;

se.fill(::NA_REAL);

se.head(r) = Rinv.rowwise().norm();

se = Pmat * se;

// create fitted values from effects
effects.tail(X.rows() - r).setZero();

fitted = PQR.householderQ() * effects;

}

Figure 12: ColPivQRLSCpp: Least squares using the pivoted QR decomposition.

R> print(summary(fmPQR <- fastLm(y ~ f1 * f2, dd)), signif.st = FALSE)

Call:

fastLm.formula(formula = y ~ f1 * f2, data = dd)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.977859 0.058165 16.812 3.413e-09

f1B 12.038068 0.082258 146.346 < 2.2e-16

f1C 3.117222 0.082258 37.896 5.221e-13

f1D 4.068523 0.082258 49.461 2.833e-14

f2b 5.060123 0.082258 61.516 2.593e-15

f2c 5.997592 0.082258 72.912 4.015e-16

f1B:f2b -3.014763 0.116330 -25.916 3.266e-11

f1C:f2b 7.702999 0.116330 66.217 1.156e-15

f1D:f2b 8.964251 0.116330 77.059 < 2.2e-16

f1B:f2c NA NA NA NA

f1C:f2c 10.961326 0.116330 94.226 < 2.2e-16
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f1D:f2c 12.041081 0.116330 103.508 < 2.2e-16

Residual standard error: 0.2868 on 11 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999

R> all.equal(coef(fm1), coef(fmPQR))

[1] TRUE

R> all.equal(unname(fitted(fm1)), fitted(fmPQR))

[1] TRUE

R> all.equal(unname(residuals(fm1)), residuals(fmPQR))

[1] TRUE

The rank-revealing SVD method produces the same fitted values but not the same coefficients.

R> print(summary(fmSVD <- fastLm(y ~ f1 * f2, dd, method = 4)),

+ signif.st = FALSE)

Call:

fastLm.formula(formula = y ~ f1 * f2, data = dd, method = 4)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.977859 0.058165 16.812 3.413e-09

f1B 7.020458 0.038777 181.049 < 2.2e-16

f1C 3.117222 0.082258 37.896 5.221e-13

f1D 4.068523 0.082258 49.461 2.833e-14

f2b 5.060123 0.082258 61.516 2.593e-15

f2c 5.997592 0.082258 72.912 4.015e-16

f1B:f2b 2.002847 0.061311 32.667 2.638e-12

f1C:f2b 7.702999 0.116330 66.217 1.156e-15

f1D:f2b 8.964251 0.116330 77.059 < 2.2e-16

f1B:f2c 5.017610 0.061311 81.838 < 2.2e-16

f1C:f2c 10.961326 0.116330 94.226 < 2.2e-16

f1D:f2c 12.041081 0.116330 103.508 < 2.2e-16

Residual standard error: 0.2868 on 11 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999

R> all.equal(coef(fm1), coef(fmSVD))

[1] "'is.NA' value mismatch: 0 in current 1 in target"

R> all.equal(unname(fitted(fm1)), fitted(fmSVD))
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[1] TRUE

R> all.equal(unname(residuals(fm1)), residuals(fmSVD))

[1] TRUE

The coefficients from the symmetric eigendecomposition method are the same as those from
the SVD, hence the fitted values and residuals must be the same for these two methods.

R> summary(fmVLV <- fastLm(y ~ f1 * f2, dd, method = 5))

R> all.equal(coef(fmSVD), coef(fmVLV))

[1] TRUE

4.7. Comparative speed

In the RcppEigen package the R function to fit linear models using the methods described
above is called fastLm. It follows an earlier example in the Rcpp package which was carried
over to both RcppArmadillo and RcppGSL. The natural question to ask is, “Is it indeed fast to
use these methods based on Eigen?”. To this end, the package provides benchmarking code for
these methods, R’s lm.fit function and the fastLm implementations in the RcppArmadillo
(Eddelbuettel et al. 2017b) and RcppGSL (Eddelbuettel and François 2017) packages, if they
are installed. The benchmark code, which uses the rbenchmark (Kusnierczyk 2012) package,
is in a file named lmBenchmark.R in the examples subdirectory of the installed RcppEigen
package.

It can be run as

R> source(system.file("examples", "lmBenchmark.R", package = "RcppEigen"))

Results will vary according to the speed of the processor and the implementation of the
BLAS (Basic Linear Algebra Subroutines) used. (Eigen methods do not use the BLAS but
the other methods do.) The Eigen3 template library does not use multi-threaded code for
these operations but does use the graphics pipeline instructions (SSE and SSE2, in this case)
in some calculations.

Results obtained on a desktop computer, circa 2010, are shown in Table 2. The processor
used for these timings is a 4-core processor but almost all the methods are single-threaded and
not affected by the number of cores. Only the arma, lm.fit, GESDD and GSL methods benefit
from the multi-threaded BLAS implementation provided by OpenBLAS, and the relative
speed increase is modest for this problem size and number of cores (at 7.76 seconds relative
to 10.29 seconds for arma, 13.74 seconds relative to 16.91 seconds for lm.fit, and 176.95
seconds relative to 193.29 seconds for the GSL). Parallel computing approaches will always
have to trade-off increased communication and overhead costs against the potential gains from
running multiple execution threads.

These results indicate that methods based on forming and decomposing X>X (LDLt, LLt
and SymmEig) are considerably faster than the others. The SymmEig method, using a rank-
revealing decomposition, would be preferred, although the LDLt method could probably be
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Method Relative Elapsed User Sys

LDLt 1.00 1.18 1.17 0.00
LLt 1.01 1.19 1.17 0.00

SymmEig 2.76 3.25 2.70 0.52
QR 6.35 7.47 6.93 0.53

arma 6.60 7.76 25.69 4.47
PivQR 7.15 8.41 7.78 0.62

lm.fit 11.68 13.74 21.56 16.79
GESDD 12.58 14.79 44.01 10.96

SVD 44.48 52.30 51.38 0.80
GSL 150.46 176.95 210.52 149.86

Table 2: lmBenchmark results on a desktop computer for the default size, 100, 000× 40, full-
rank model matrix running 20 repetitions for each method. Times (Elapsed, User, and Sys)
are in seconds. The BLAS in use is a locally-rebuilt version of the OpenBLAS library included
with Ubuntu 11.10.

modified to be rank-revealing. However, the dimensions of the problem will influence the
comparative results. Because there are 100,000 rows in X, methods that decompose the
whole X matrix (all the methods except those named above) will be at a disadvantage.

The pivoted QR method is 1.6 times faster than R’s lm.fit on this test and provides nearly
the same information as lm.fit. Methods based on the singular value decomposition (SVD
and GSL) are much slower but, as mentioned above, this is caused in part by X having many
more rows than columns. The GSL method from the GNU Scientific Library uses an older
algorithm for the SVD and is clearly out of contention.

The GESDD method provides an interesting hybrid: It uses the Eigen classes, but then deploys
the LAPACK routine dgesdd for the actual SVD calculation. The resulting time is much
faster than using the SVD implementation of Eigen which is not a particularly fast SVD
method.

5. Delayed evaluation

A form of delayed evaluation is used in Eigen. That is, many operators and methods do not
evaluate the result but instead return an “expression object” that is evaluated when needed.
As an example, even though one writes the X>X evaluation as .rankUpdate(X.adjoint())
the X.adjoint() part is not evaluated immediately. The rankUpdate method detects that it
has been passed a matrix that is to be used in its transposed form and evaluates the update
by taking inner products of columns of X instead of rows of X>.

As Eigen has developed some of these unevaluated expressions have been modified. In Eigen
3.1, which is incorporated in version 0.3.1 of RcppEigen, the .adjoint() method applied
to a real dense matrix copies the contents of the original matrix, flags it as row-major and
interchanges the number of rows and columns. This is indeed the adjoint of the original
matrix but, at one time, the wrap method for the Eigen dense matrix classes would fail on
row-major matrices.

In the code for the transpose of an integer matrix shown in Figure 1 the transpose is assigned
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const MapMati A(as<MapMati>(AA));
return wrap(A.transpose());

Figure 13: badtransCpp: Transpose producing a run-time error in early versions of
RcppEigen.

to a MatrixXi object before applying wrap to it. The assignment forces the evaluation as a
column-major matrix. In early versions of the RcppEigen package if this step is skipped, as
in Figure 13, the result would have been incorrect.

R> Ai <- matrix(1:6, ncol = 2L)

R> ftrans2 <- cxxfunction(signature(AA = "matrix"), badtransCpp,

+ "RcppEigen", incl)

R> (At <- ftrans2(Ai))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Although the problem no longer persists for this particular example, the recommended prac-
tice is to first assign objects before wrapping them for return to R.

6. Sparse matrices

Eigen provides sparse matrix classes. An R object of class dgCMatrix (from the Matrix
package by Bates and Maechler (2017)) can be mapped as in Figure 14.

R> sparse1 <- cxxfunction(signature(AA = "dgCMatrix", yy = "numeric"),

+ sparseProdCpp, "RcppEigen", incl)

R> data("KNex", package = "Matrix")

R> rr <- sparse1(KNex$mm, KNex$y)

R> stopifnot(all.equal(rr$At, t(KNex$mm)),

+ all.equal(rr$Aty, as.vector(crossprod(KNex$mm, KNex$y))))

using Eigen::MappedSparseMatrix;

using Eigen::SparseMatrix;

const MappedSparseMatrix<double> A(as<MappedSparseMatrix<double> >(AA));
const MapVecd y(as<MapVecd>(yy));
const SparseMatrix<double> At(A.adjoint());

return List::create(Named("At") = At,

Named("Aty") = At * y);

Figure 14: sparseProdCpp: Transpose and product with sparse matrices.
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typedef Eigen::MappedSparseMatrix<double> MSpMat;

typedef Eigen::SparseMatrix<double> SpMat;

typedef Eigen::SimplicialLDLT<SpMat> SpChol;

const SpMat At(as<MSpMat>(AA).adjoint());
const VectorXd Aty(At * as<MapVecd>(yy));
const SpChol Ch(At * At.adjoint());

if (Ch.info() != Eigen::Success) return R_NilValue;

return List::create(Named("betahat") = Ch.solve(Aty),

Named("perm") = Ch.permutationP().indices());

Figure 15: sparseLSCpp: Solving a sparse least squares problem.

Sparse Cholesky decompositions are provided by the SimplicialLLT and SimplicialLDLT

classes in the RcppEigen package for R. These are subclasses of the SimplicialCholesky

templated. A sample usage is shown in Figure 15.

R> sparse2 <- cxxfunction(signature(AA = "dgCMatrix", yy = "numeric"),

+ sparseLSCpp, "RcppEigen", incl)

R> str(rr <- sparse2(KNex$mm, KNex$y))

List of 2

$ betahat: num [1:712] 823 340 473 349 188 ...

$ perm : int [1:712] 572 410 414 580 420 425 417 426 431 445 ...

R> res <- as.vector(solve(Ch <- Cholesky(crossprod(KNex$mm)),

+ crossprod(KNex$mm, KNex$y)))

R> stopifnot(all.equal(rr$betahat, res))

R> all(rr$perm == Ch@perm)

[1] FALSE

The fill-reducing permutations are different.

7. Summary

This paper introduced the RcppEigen package which provides high-level linear algebra com-
putations as an extension to the R system. RcppEigen is based on the modern C++ library
Eigen which combines extended functionality with excellent performance, and utilizes Rcpp
to interface R with C++. Several illustrations covered common matrix operations and several
approaches to solving a least squares problem—including an extended discussion of rank-
revealing approaches. Sparse matrix computations were also discussed, and a short example
provided an empirical demonstration of the excellent run-time performance of the RcppEigen
package.
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