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Abstract

The simultaneous analysis of many statistical tests is ubiquitous in applications. Per-
haps the most popular error rate used for avoiding type one error inflation is the false
discovery rate (FDR). However, most theoretical and software development for FDR con-
trol has focused on the case of continuous test statistics. For discrete data, methods that
provide proven FDR control and good performance have been proposed only recently. The
R package DiscreteFDR (Durand and Junge (2019), version 1.2) provides an implementa-
tion of these methods. For particular commonly used discrete tests such as Fisher’s exact
test, it can be applied as an off-the-shelf tool by taking only the raw data as input. It can
also be used for any arbitrary discrete test statistics by using some additional information
on the distribution of these statistics. The paper reviews the statistical methods in a
non-technical way, provides a detailed description of the implementation in DiscreteFDR

and presents some sample code and analyses.

Keywords: multiple testing, false discovery rate, package, R, discrete tests, Fisher’s exact test.

1. Introduction

Multiple testing procedures are important tools for identifying statistically significant findings
in massive and complex data while controlling a specific error rate. An important focus has
been given to methods controlling the false discovery rate (FDR), i.e., the expected proportion
of falsely rejected hypotheses among all rejected hypotheses, which has become the standard
error rate for high dimensional data analysis. Since the original procedure of Benjamini and
Hochberg (1995), much effort has been undertaken to design FDR controlling procedures that
adapt to various underlying structures of the data, such as the quantity of signal, the signal
strength and the dependencies, among others.

The R package DiscreteFDR, presented in this paper, deals with adaptation to discrete and
non-identically distributed test statics by implementing procedures developed by Döhler, Du-
rand, and Roquain (2018) (in the sequel abbreviated as [DDR]). This type of data arises in
many relevant applications, in particular when data represent frequencies or counts. Exam-
ples can be found in clinical studies (see e.g., Westfall and Wolfinger (1997)), genome-wide
association studies (GWAS) (see e.g., Dickhaus, Straßburger et al. (2012)) and next gen-
eration sequencing data (NGS) (see e.g., Chen and Doerge (2015b)). The primary discrete
test we have in mind in this paper is Fisher’s exact test, see Lehmann and Romano (2006),
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but we also sketch an application of DiscreteFDR to multiple Poisson tests in the spirit of
Jimenez-Otero, de Una-Alvarez, and Pardo-Fernandez (2018).

It is well known (see e.g., Westfall and Wolfinger (1997)) that applying critical values derived
for continuous approximations to discrete null distributions can generate a severe power loss,
already at the stage of the single tests. A consequence is that using ’blindly’ the BH procedure
with discrete p values will control the FDR in a too conservative manner. Therefore, more
powerful procedures that avoid this conservatism are much sought after in applications, see
for instance Karp, Heller et al. (2016), van den Broek, Dijkstra et al. (2015) and Dickhaus,
Straßburger et al. (2012).

In the literature, constructing multiple testing procedures that take into account the dis-
creteness of the test statistics has a long history, for more details see [DDR]. The heuristic
motivation for the procedures implemented in DiscreteFDR is as follows. Let p(1) ≤ . . . ≤ p(m)

denote the ordered p values and H(1), . . . , H(m) the corresponding null hypotheses. The BH

procedure [BH] works by rejecting H(1), . . . , H(k̂), where k̂ is the largest integer k such that

p(k) ≤
k

m
· α. (1)

Now suppose that the cumulative distribution functions F1, . . . , Fm of the p values under the
null hypotheses are known and introduce the transformation

ξ(t) =
1

m

m∑

i=1

Fi(t), t ∈ [0, 1]. (2)

For continuous settings we often have Fi(t) = t which implies ξ(t) = t and so we can rephrase
(1) as

ξ(p(k)) ≤
k

m
· α. (3)

Heyse (2011) proposed to use the transformation ξ in (2), where the Fi need no longer be
uniform and identical. The benefit of this approach is that - depending on the discreteness
and heterogeneity of the involved p value distributions - ξ(t) may be much smaller than t.
Clearly, the smaller the ξ-values, the more hypotheses can be rejected. Figure 1 displays such
a function where the functions F1, . . . , F2446 are derived from m = 2446 independent Fisher’s
exact test statistics based on the pharmacovigilance data from Heller and Gur (2011) (see
Section 5 for more details). In this example we have ξ(t) ≈ t/3, thereby yielding a potentially
strong rejection enhancement.

Unfortunately, the Heyse procedure does not rigorously control the FDR in general; counter-
examples are provided in Heller and Gur (2011) and [DDR]. To correct this, [DDR] introduce
new procedures relying on the following modifications of the ξ function (more details are
presented in Section 3):

ξSU(t) =
1

m

m∑

i=1

Fi (t)

1 − Fi (τm)
; ξSD(t) =

1

m

m∑

i=1

Fi (t)

1 − Fi (t)
, t ∈ [0, 1],

where τm is the generalized inverse of ξSD taken at point α. Figure 1 demonstrates that
the difference between these modifcations and the original ξ can be very small, in particular
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for small values of t. In addition, [DDR] also introduce more powerful ’adaptive’ versions,
meaning that the derived critical values are designed in a way that ’implicitly estimates’ the
overall proportion of true null hypotheses. All these procedures provide rigorous FDR control
under independence of the p values and are implemented in the R package DiscreteFDR.
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Figure 1: Plots of variants of ξ for the pharmacovigilance data. The solid black line corre-
sponds to the uniform case, the discrete variants are represented by blue (for ξ), green (for
ξSD) and red (for ξSU) solid lines. Additionally, five arbitrarily selected Fi’s are displayed by
using different line types.

While there exist numerous R functions and packages that implement multiple testing proce-
dures in the continuous setting (see e.g., Hothorn, Bretz, and Westfall (2008) and Blanchard,
Dickhaus et al. (2017)), there are only relatively few tools available that deal specifically with
discrete test statistics. The package MHTdiscrete (see Zhu and Guo (2017)) is described by its
authors as a ’comprehensive tool for almost all existing multiple testing methods for discrete
data’. It implements several FWER and FDR procedures designed for discrete data. While the
procedures for FWER control are extensively described in an accompanying preprint (see Zhu
and Guo (2017)), there seems to be no detailed mathematical description of the implemented
FDR procedures. The package discreteMTP (see Heller, Gur, and Yaacoby (2012)) also im-
plements several methods aiming at FDR control (including the Heyse procedure) described
in more detail in Heller and Gur (2011). The main contribution of the package DiscreteFDR

is to provide practitioners with a simple to use set of tools (both adaptive and non-adaptive)
for analysing discrete data with both proven FDR control and good performance.

In this paper, our primary aim is to introduce DiscreteFDR. As an ’appetizer’, we start by
illustrating the main ideas through analysis of a toy data set. We hope to convince readers
that it is worthwile to use discrete FDR methods. We then review the mathematical methods
and results from [DDR], followed by some more technical details of the implementation in
Section 4 . Section 5 contains an analysis of some real data and includes an example that
illustrates how DiscreteFDR can be used for arbitrary discrete tests. The paper concludes
with a summary and discussion.

We realize - and indeed hope - that the audience of this paper may be quite heterogeneous,
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which is why we would like to suggest some guidance for possible ways of reading it. For
subject matter scientists and practitioners who may not be interested in the mathematical
or software details, we especially recommend to study Sections 2 and 5. For readers who
additionally want to understand more of the mathematical background we recommend Section
3, for readers interested in the implementation details of the R-package we recommend Section
4.

2. A toy example

To give a first impression of how DiscreteFDR works, we consider an artifical toy example.
A more realistic example involving pharmacovigilance data is given in Section 5.

Suppose we would like to compare two treatments in nine different populations. For each
population we do this by evaluating the responders and non-responders for each treatment.
This leads to categorical data which can be represented, for each population i = 1, . . . , 9 in
the following 2 × 2 table:

responders non responders total
treatment 1 x1i y1i n1i

treatment 2 x2i y2i n2i

total x1i + x2i y1i + y2i ni = n1i + n2i

Table 1: 2 × 2 table for population i.

Denoting the responder probabilities for population i by π1i and π2i we can test e.g.

H0i : π1i = π2i vs. H1i : π1i 6= π2i

by using Fisher’s (two-sided) exact test (see Lehmann and Romano (2006), which is im-
plemented in the R function fisher.test). Suppose the data in the nine populations are
independent and we observe the following data frame df

X1 Y1 X2 Y2

1 4 144 0 132

2 2 146 0 132

3 2 146 1 131

4 14 134 3 129

5 6 142 2 130

6 9 139 1 131

7 4 144 2 130

8 0 148 2 130

9 1 147 2 130

In this data frame each of the 9 rows represents the data of an observed 2 × 2 table: e.g.,
the third row of the data corresponds to x13 = 2, y13 = 146, x23 = 1, y23 = 131. Even though
in this example, the total number of tested hypotheses m = 9 is very small, for illustrative
purposes we deal with the multiplicity problem here by controlling FDR at level α = 5%.
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The DBH step-down procedure (to be explained in more detail in Section 3) can be applied
directly to the data frame object df and yields the following adjusted p values:

R> library("DiscreteFDR")

R> DBH.sd.fast <- fast.Discrete(df, alternative = "two.sided",

+ direction = "sd")

R> DBH.sd.fast$Adjusted

[1] 0.25630985 1.00000000 1.00000000 0.03819796 0.51482782 0.03819796

[7] 1.00000000 0.47895996 1.00000000

Thus we can reject two hypotheses at FDR-level α = 5%. In order to compare this with the
usual (continuous) BH procedure we have to determine the raw p values first. This would
be possible by applying the fisher.test function to all nine 2 × 2 tables. Alternatively, we
may use the more convenient function fisher.pvalues.support included in our package for
accessing the raw p values:

R> p <- fisher.pvalues.support(df, alternative = "two.sided")

R> raw.pvalues <- p$raw

R> p.adjust(raw.pvalues, method = "BH")

[1] 0.37430072 0.74976959 1.00000000 0.09570921 0.51928737 0.09570921

[7] 0.77313633 0.49804147 0.77313633

Applying the continuous BH procedure from the stats package in the last line of code, we find
that we can not reject any hypotheses at FDR-level α = 5%. As this example illustrates, the
discrete approach can potentially yield a large increase in power. The gain depends on the
involved distribution functions and the raw p values. To appreciate where this comes from, it
is instructive to consider the distribution functions F1, . . . , F9 of the p values under the null
in more detail. Take for instance the first 2 × 2 table:

responders non responders total
treatment 1 4 144 148
treatment 2 0 132 132
total 4 276 280

Table 2: 2 × 2 table for population 1.

Fisher’s exact test works by determining the probability of observing this (or a more ’extreme’)
table, given that the margins are fixed. So each Fi is determined by the margins of table i.
Since x11 + x21 = 4, the only potentially observable tables are given by x11 = 0, . . . , 4. For
each one of these 5 values a p value can be determined using the hypergeometric distribution.
Therefore, the p value of any 2 × 2 table with margins given by the above table can take
(at most) 5 distinct values, say x1, . . . , x5. Combining these 5 values into a set, we obtain
the support A1 = {x1, . . . , x5} of distribution F1. Now we can continue in this vein for
the remaining 2 × 2 tables to obtain the supports A1, . . . , A9 for the distributions functions
F1, . . . , F9. The supports can be accessed via the $support command, e.g.
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R> p$support[c(1,5)]

[[1]]

[1] 0.04820493 0.12476691 0.34598645 0.62477763 1.00000000

[[2]]

[1] 0.002173856 0.007733719 0.028324482 0.069964309 0.154043258

[6] 0.288492981 0.481808361 0.726262402 1.000000000

returns A1 and A5. Panel (a) in Figure 2 shows a graph of the distribution functions
F1, . . . , F9. Each Fi is a step-function with Fi(0) = 0, the jumps occuring only on the support
Ai and Fi(x) = x only for x ∈ Ai. In particular, all distributions are stochastically larger than
the uniform distribution (i.e., Fi(x) ≤ x), but in a heterogeneous manner. This heterogeneity
can be exploited e.g., by transforming the raw p values from the exact Fisher’s test using the

function ξSD(x) =
9∑

i=1

Fi(x)

1 − Fi(x)
presented in the Introduction. Panel (b) shows that ξSD is a

step function. Its jumps occur on the joint support A = A1 ∪ . . . ∪ A9. Panel (b) also shows
that ξSD(x) ≪ x, at least for small values of x. It turns out that the critical values of our
new DBH step-down procedure are essentially given by inverting ξSD at the critical values of
the [BH] procedure 1 · α/9, 2 · α/9, . . . , α, so that these values are considerably larger than
the [BH] critical values (for more details see Section 3). This is illustrated in panel (c) along
with the ordered p values. In particular, all asterisks are located above the green [BH] dots,
therefore this procedure can not reject any hypothesis. In contrast, the two smallest p values
are located below red DBH step-down dots, so that this procedure rejects two hypotheses as
we had already seen earlier.
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Figure 2: Panel (a) depicts the distribution functions F1, . . . , F9 in various colours, (b) is a
graph of the transformation ξSD. The uniform distribution function is shown in light grey in
(a) and (b). Panel (c) shows the [BH] critical values (green dots), the DBH step-down critical
values (red dots) and the sorted raw p values (asterisks).
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3. Implemented FDR-controlling procedures

The procedures used in the package are all based upon a comparison between the ordered
p values p(k), 1 ≤ k ≤ m, and a sequence of nondecreasing critical values τk, 1 ≤ k ≤ m.

Depending on how these two sequences intercept allow to define a rejection number k̂ and
thus a rejection set of null hypotheses H(1), . . . , H(k̂). Classically, the step-up procedure with
critical values τk, 1 ≤ k ≤ m, corresponds to choose the last right crossing point

k̂SU = max{k : p(k) ≤ τk}.

Hence, it goes backwards, starting from the largest p value p(m), stopping the first time it

finds k0 such that p(k0) ≤ τk0 and returning k̂SU = k0. By contrast, the step-down procedure
with critical values τk, 1 ≤ k ≤ m uses the first left crossing point

k̂SD = max{k : for all k′ ≤ k, p(k′) ≤ τk′}.

Hence, it goes forward, starting from the smallest p value p(1), stopping the first time it finds

k0 such that p(k0) > τk0 and returning k̂SD = k0 − 1.

Such multiple testing procedures are thus driven by a sequence of critical values and by
a choice between the step-up or step-down version. In our package, the 5 different possible
choices are listed in Table 3, with 3 step-up procedures [DBH-SU], [A-DBH-SU], [DBR-λ] and
2 step-down procedures [DBH-SD], [A-DBH-SD]. We easily check that [A-DBH-SU] (resp. [A-
DBH-SD]) rejects always more null hypotheses than [DBH-SU] (resp. [DBH-SD]). Note that
the names of the procedures are slightly different in the original paper [DDR]. This is done
to emphasize that our package is primarily devoted to the discrete case.

3.1. Critical values

The specific shape of the critical values comes from the FDR upper-bounds derived in [DDR],
which ensures that these procedures control the FDR at the nominal level α under indepen-
dence of the p values, see Theorem 1 and Corollary 1 in [DDR]. In Table 3, each Fi is defined
as the (least favorable) cumulative distribution function of the p value pi under the null hy-
pothesis. As in the example from Section 2, A = A1 ∪ . . . ∪ Am ⊂ [0, 1] stands for the union
of the supports of the marginal distributions of the p values, pi, 1 ≤ i ≤ m which can be de-
termined under the full hull hypothesis, i.e., when all null hypotheses are assumed to be true.
While A = [0, 1] in the case where the Fi’s are continuous functions, the primary setting we
have in mind is a large number of simultaneous Fisher exact tests, so that A = A1 ∪ . . . ∪ Am

is finite but very large. See also Section 2 for some concrete examples.

Let us underline that obtaining such τk numerically might be time consuming because the
overall support A can be large while testing whether each t ∈ A satisfies the required condition
given by the second column in Table 3 involves a complex combination of the Fi, 1 ≤ i ≤ m.
In the package, we have implemented a shortcut that reduces the range of t ∈ A that has to
be explored: it is based on the fact that if Fi(t) ≤ t for all t and i (super-uniformity), we have
the following lower bounds τ min

k ’s on the critical values τk’s, see Lemmas 2, 3 and 4 in [DDR]:
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[DBH-SU] τ min
k = max{t ∈ A : t ≤ αk/m(1 + α)−1}

[DBH-SD] τ min
k = max{t ∈ A : t ≤ αk/m(1 + αk/m)−1}

[A-DBH-SU] τ min
m = max{t ∈ A : t ≤ α(1 + α)−1}

τ min
k = max

{
t ∈ A : t ≤ τm ∧

(
(1 − τm)

αk

m − k + 1

)}
, k < m;

[A-DBH-SD] τ min
k = max{t ∈ A : t ≤ αk/(m − (1 − α)k + 1)}

[DBR-λ] τ min
k = max

{
t ∈ A : t ≤ λ ∧

(
(1 − λ) αk

m−k+1

)}

Our current implementations of [DBH-SU] and [A-DBH-SU] first determine τm by searching
for τm in A∩[τ min

m , 1] and then determine all other τk simultaneously using τk ≥ τ min
1 instead of

τk ≥ τ min
k . We take this approach for simplicity and performance reasons. The stepdown pro-

cedures only use the latter constraint. These lower bounds help to reduce the computational
burden considerably.

3.2. Transformed p values

If we are only interested in the set of rejected null hypotheses and not in the critical values,
we can significantly speed-up the program by skipping the explicit computation of the critical
values and by directly considering the transformed p values:

p′

k = ξk(p(k)), 1 ≤ k ≤ m, (4)

where the functions ξk(·), defined in Table 3, are such that τk is the inverse of ξk at point
αk/m. Note that while the elements of {p(k), 1 ≤ k ≤ m} are ordered, this is not necessarily
the case for the elements of {p′

k, 1 ≤ k ≤ m}. The following proposition is obvious.

Proposition 1 For each of the critical values listed in Table 3 we have for all 1 ≤ k ≤ m,

p(k) ≤ τk ⇐⇒ p′

k ≤ αk/m, (5)

where p′

k are the transformed p values defined by (4).

A consequence of (5) is that the step-up and step-down cutoffs can be computed by using
only the transformed p values and the BH critical values as follows:

k̂SU = max{k : p′

k ≤ αk/m}

k̂SD = max{k : for all k′ ≤ k, p′

k′ ≤ αk′/m}.

Thus, all of the above methods can be interpreted as variant of the classical (SU or SD) BH
procedure, for which each p value has been suitably transformed to account for discreteness.

3.3. Adjusted p values

In applications, it is often convenient for the analyst to use adjusted p values p̃k instead of the
raw p values and rejecting those hypotheses for which p̃k ≤ α. The advantage of this approach
is that it is more convenient to apply and easier to communicate. Furthermore, it avoids
to explicitly rely on the, often somewhat arbitrary, choice of α. With the transformations
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introduced above, it is straightforward to define (variants of) discrete FDR-adjusted p values.
The generic definition given in Dudoit and van der Laan (2007) then yields

p̃k = min
ℓ=k,...,m

(
m

ℓ
· p′

ℓ

)
∧ 1, 1 ≤ k ≤ m (6)

for step-up procedures and

p̃k = max
ℓ=1,...,k

(
m

ℓ
· p′

ℓ

)
∧ 1, 1 ≤ k ≤ m, (7)

for step-down procedures. For our step-down procedures, the usual result holds true.

Proposition 2 For the step-down procedures [DBH-SD], [A-DBH-SD] and the step-up pro-
cedure [DBR-λ] listed in Table 3 we have for all α ∈ (0, 1), for all 1 ≤ k ≤ m,

H(k) is rejected by the procedure taken at level α ⇐⇒ p̃k ≤ α,

where p̃k are the adjusted p values defined by (7).

In the above proposition, note that H(k) is given by the original ordering of the p values
{pi, 1 ≤ i ≤ m}.

For the procedures [DBH-SU], [A-DBH-SU], the situation is more complicated since the ad-
justed p value p̃k depends on α (through τm). The statement in Proposition 2 actually still
holds in that situation but not the usual interpretation that the adjusted p value p̃k is the
smallest level α at which the procedure rejects H(k). Hence, the analyst would need to exer-
cise care in interpreting them. To avoid any confusion, the package does not report adjusted
p values for [DBH-SU] and [A-DBH-SU].

4. Implementation in the package DiscreteFDR

4.1. General structure

The package consists of four groups of functions:

Main functions discrete.BH

DBR

Kernel functions kernel.DBH.crit

kernel.DBH.fast

kernel.ADBH.crit

kernel.ADBH.fast

kernel.DBR.crit

kernel.DBR.fast

Helper functions match.pvals

build.stepfuns

short.eff

fisher.pvalues.support

Wrapper functions DBH

ADBH

fast.discrete
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The discrete.BH function implements [DBH-SU], [DBH-SU], [A-DBH-SU] and [A-DBH-
SD]. Similarly, DBR implements [DBR-λ]. They use the first three of the helper functions for
common operations (see details in 4.2) and the kernels for the actual computation. [DBH-
SU], [DBH-SD], [A-DBH-SU] and [A-DBH-SD] can be accessed directly through the wrapper
functions DBH and ADBH, respectively.

The wrapper function fast.discrete applies the Discrete FDR-controlling procedures, which
are implemented in discrete.BH, to a set of 2 × 2 contingency tables, given by a matrix or
data frame. It uses the fisher.pvalues.support helper function to compute p value c.d.f.s
and raw p values from these tables in the framework of Fisher’s exact test.

We also provide the amnesia data set, used in our examples in Section 5 and in our paper
[DDR]. It is basically the amnesia data set of package discreteMTP, but slightly reformatted
(the difference lies in the third column).

The end user should only use the main functions DBR and discrete.BH, and the wrapper
functions fast.discrete, DBH and ADBH. The other functions are only internal functions
called by the main ones. We intentionally did not hide them, so that interested users would
be able to understand how the main procedures work.

The functions discrete.BH, DBH, ADBH and DBR take the following input values:

raw.pvalues The vector (of the same length as pCDFlist) of raw observed p values
which is calculated from the data.

pCDFlist A list of vectors that represent the supports A1, . . . , Am of the discrete
distribution functions F1, . . . , Fm under the respective null hypotheses,
as described in Section 3.

alpha The global significance level α ∈ (0, 1) at which the procedure provides
FDR control; the default is 0.05.

direction (DBH and ADBH only) A string, either "su" or "sd", specifying whether
the step-up variant (the default, "su") or the step-down variant
("sd") should be used.

adaptive Specifying whether the adaptive version is to be used (TRUE) or not
(FALSE).

lambda (DBR only) The λ parameter of the [DBR-λ] procedure as in Table 3;
the default is 0.05.

ret.crit.consts Specifying whether the critical values τk are to be computed and
included in the output list, at the expense of computational speed;
the default is FALSE.

They provide the following outputs:

Rejected A vector containing the rejected raw p values
Indices A vector containing the indices of rejected hypotheses

k.hat Number of rejected hypotheses. This corresponds to k̂SU and k̂SD,
as described in Section 3.2.

Alpha Maximum significance level for the transformed p values for which
a rejection occurred, that is Alpha = α· k.hat/m. This corre-
sponds to τk (k = 1, . . . , m) as in Section 3.

Critical.constants A vector containing the critical values (if requested)
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Adjusted A vector containing adjusted p values (if available)
Lambda (DBR only) The parameter lambda that was used when calling DBR

More details as to the implementation are provided in the following part.

4.2. Details for some specific functions

Helper functions

The match.pvals function performs nearest-neighbor matching for all elements of raw.pvalues,
i.e., it checks for each value whether it occurs in its respective p value c.d.f. If this is not
the case, it is replaced by the value that is closest to it, that is, its nearest neighbor in its
c.d.f. This is to ensure that all values of raw.pvalues actually originate from their respective
c.d.f.s, e.g., to correct rounding errors. It has been inspired by a help page of the package
discreteMTP.

build.stepfuns converts the vectors in pCDFlist to step function objects. This makes them
easier to evaluate in the kernel functions. It is assumed and required that Fi(t) ≤ t applies
to all c.d.f.s. Compliance with this premise cannot be not checked, so the user is responsible
for providing correct vectors. If this condition is not met, the results may be incorrect.

The short.eff function extracts all values from a sorted vector that are greater than or equal
to the effective critical value associated to a threshold. It simply replaces multiple recurring
lines of code with one single function call.

fisher.pvalues.support computes discrete raw p values and their support for the test of
no association between two categorical variables in 2 x 2 contingency tables using Fisher’s
exact tests. The p values are computed directly by phyper, instead of fisher.test, because
the latter is much slower. The function is used by the fast.discrete function to apply such
contingency tables directly to the discrete.BH function.

Main Functions

Basically, both main functions have the same workflow:

1. Use match.pvals for matching of raw p values with the c.d.f.s and sort the results in
ascending order.

2. Convert the c.d.f. vectors in pCDFlist to step functions by means of build.stepfuns.

3. Determine the overall support A =
⋃

Ai from the individual c.d.f.s, remove double
values and sort them in ascending order.

4. Use the knowledge of lower bounds, as presented in Section 3.1, to remove unnecessary
elements from the support.

5. Compute transformed p values and/or critical values (if requested) with kernel functions
(see 4.2.3).

6. Create output list with elements as described in Section 4.1.
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Kernel functions

As stated in Section 3, there are two ways to determine which hypotheses corresponding to
the elements of a raw p value vector can be rejected.

1. With critical values (see 3.1): this approach works by first determining the critical
values. Especially when the size of the support and the number of hypotheses are large,
it is computationally intensive, because all elements of the support have to be evaluated
by every single c.d.f.

2. With transformed p values (see Section 3.2): here, only the raw p values are evaluated.
Thus, it is much more efficient.

As a result, all three implemented procedures have two kernels, that is, a fast one for simplified
computation and a slower implementation that calculates critical values. These values are
then used to determine which hypotheses are to be rejected and which are not.

The kernel functions need the following parameters:

stepf A list of step function objects.
pv.numer A vector of values from the support for the argument of the Fi in the

numerators of the fractions in the formulas presented in Table 3.
pv.denom A vector of p values or a single one for the denominators as in Table 3.

The critical values kernels additionally need:

alpha A numeric value specifying the global significance level.
sorted.pv A numeric vector of observed p values in ascending order.

For the [DBH] and [ADBH] procedures, a direction ("su" for step-up or "sd" for step-down)
do not need to be explicitly passed to the kernels, because these two cases can be distinguished
by pv.numer (the input values for the numerators of the fractions presented in Table 3) and
pv.denom (the value(s) for the respective denominators). If all elements of both vectors are
identical, we have the step-down case. Otherwise, it is step-up.

Basically, the kernels implement the formulas of Table 3. Every step function must be eval-
uated at every element of either the support (for the critical values approach) or only the
sorted raw p values (for the transformed p values approach). If this were done by means of
sapply and/or apply, the results would be stored in a matrix, for which enough memory is
reserved automatically. For a large number of hypotheses and even larger support sets, the
size of this matrix would be vast and may easily take up several, if not dozens, of gigabytes
of RAM. This may be too much for many workstations. As a solution to this problem, we
implemented memory-conserving algorithms.

For [DBH-SD], this means, that, for each p value c.d.f. Fi, we compute the fractions Fi(t)
1−Fi(t)

for all of {t ∈ A : t ≥ τ min
1 }, with α being the significance level (see [DDR], Lemma 3) inside

a for loop, which adds up the resulting R vectors iteratively. If the critical values are not
demanded by the user, we evaluate at the observed p values instead of the support. In both
cases, the number of passes of the for loop is identical to the number of hypotheses. For
[DBH-SU], we first compute the (last) critical constant τm as above, but we can restrict the
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computations to the set {t ∈ A : t ≥ α
1+α

} (see [DDR], Lemma 2). After that, we compute the

fractions Fi(t)
1−Fi(τm) as before, but we only have to consider values of the set {t ∈ A : t ≤ τm}.

For the [A-DBH] procedures, the step functions are evaluated iteratively at smaller chunks
of the input vectors pv.numer and pv.denom. The results of the fractions are then stored in
a matrix. We found a size of 256 MiB to deliver the best performance. Depending on the
number of hypotheses, m, the size and number of the chunks is determined dynamically. All
p value transformations and critical constant computations are done for this submatrix. The
intermediate results are then stored in vectors. This is repeated for the remaining chunks by
using a for loop. The intermediate results are updated with each pass of the loop until all
input values have been processed. The [DBR-λ] algorithm is working almost identically, but
no fractions are needed and there is no step-up/step-down direction.

4.3. Run times

To illustrate the run times of DBH, ADBH and DBR, we used the arabidopsisE data set, which
was once included in the fdrDiscreteNull package, but was removed in recent versions. From
this data, a total of 17400 hypotheses along with their respective p value distributions and
a vector of raw p values were derived (for more details, see Chen and Doerge (2015a)). The
accumulated size of the support A is 1,074,398. From this data, we used subsets of the
first m = 250, 500, 1000, 3000, 5000, 7000, 10000, 17400 hypotheses, each resulting in different
support sizes, as shown in the tables in the appendix. For each subset, the median run time
of 25 runs was recorded. The decision for multiple, repeated runs and their median was made
in order to account for possible side loads of the workstation and to avoid overly pronounced
effects of very good and especially very bad runs, so we get a robust indication of the required
time. All three methods were used with the following settings:

• alpha = 0.05

• direction = "sd" and direction = "su" (DBH and ADBH only)

• lambda = 0.05 (DBR only)

• ret.crit.consts = TRUE and ret.crit.consts = FALSE

All computations were performed with R version 3.5.1 on the following system:

• CPU: AMD Ryzen 7 1800X, 3.60 GHz

• RAM: 32 GiB DDR4, 2400 MHz

• OS: Windows 10 Education v1803

The complete results tables can be found in the appendix.

Results of critical values approach

The following plots illustrate our findings by depicting the development of the run times as
a function of the product of m and the overall support size |A|. In addition to a plot with
standard axis scaling, we also employ an additional one with logarithmic axes.
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Comparison of DiscreteFDR procedures with critical values

Figure 3: Run time comparison of DiscreteFDR procedures with computation of critical
values.

From both plots, we can clearly observe that [DBH-SU] is the fastest algorithm, followed by
[DBH-SD], whose computation takes about 1.5 times as long. The calculations of [A-DBH-SU]
takes about 4 times and those of [A-DBH-SD] almost 7 times as long as [DBH-SU]. [DBR-
0.05] needs almost exactly the same time as [A-DBH-SU], so that their respective lines in the
plots overlap. In addition, the second plot shows that these proportions of run times and, as a
result, the order remain stable after m · |A| ≈ 5, 000 ·300, 000 = 1, 500, 000, 000. Furthermore,
it is visible that the run times of all the procedures exhibit roughly linear growth.

Results of transformed p values approach
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Comparison of DiscreteFDR procedures without critical values

Figure 4: Run time comparison of DiscreteFDR procedures without computation of critical
values.

Here, it is immediately apparent that the transformed p values approach is an order of magni-
tude faster than the ones with critical values, but recognizing a ranking is a bit more difficult.
However, up to and including m · |A| ≈ 1, 000 · 64, 000 = 64, 000, 000, all procedures take
less than a second to compute their results, which is almost unnoticable. After that point,
[DBH-SD] and [DBR-0.05] are the fastest algorithms, with [DBR-0.05] outperforming every
other procedure for very large sizes. They are followed by [A-DBH-SD], [A-DBH-SU] and
[DBH-SU]. The two latter ones exhibit mostly identical performance, but the higher m · A,
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the higher the performance advantage of [A-DBH-SU] over [DBH-SU], although they remain
the slowest methods. Their largely higher computation time is explained by the fact that
these two procedures have to determine the critical value τm, which is responsible for 80%
of the computational time, as an in-depth analysis has shown. The increasing advantage of
[A-DBH-SU] over [DBH-SU] is explained by the fact that, as described before, [DBH-SU]
simply adds up the fractions of evaluated c.d.f.s with a for loop, while [A-DBH-SU] uses a
chunking approach, which also uses for loops, but requires much fewer passes than [DBH-
SU]. The advantage of this approach is mitigated by the required sorting. But sill, as a result,
[DBH-SU] becomes less efficient with larger sizes of m · A.

5. Further analyses

5.1. Analysis of pharmacovigilance data

To illustrate how the procedures in DiscreteFDR can be used for real data, we revisit the
analysis of the pharmacovigilance data from Heller and Gur (2011) performed in [DDR]. This
data set is obtained from a database for reporting, investigating and monitoring adverse drug
reactions due to the Medicines and Healthcare products Regulatory Agency in the United
Kingdom. It contains the number of reported cases of amnesia as well as the total number
of adverse events reported for each of the m = 2446 drugs in the database. For more details
we refer to Heller and Gur (2011) and to the accompanying R-package discreteMTP (Heller
et al. (2012)), which also contains the data. Heller and Gur (2011) investigate the association
between reports of amnesia and suspected drugs by performing for each drug a Fisher’s exact
test (one-sided) for testing association between the drug and amnesia while adjusting for
multiplicity by using several (discrete) FDR procedures. In what follows we present code
that reproduces parts of Figure 2 and Table 1 in [DDR].

We procede as in the example in section 2. Since we need to access the critical values
we first determine the p values and their support for the data set amnesia contained for
convenience in the package DiscreteFDR. For this, we use the option "HG2011" in the function
fisher.pvalues.support.

R> library("DiscreteFDR")

R> data(amnesia)

R> amnesia.formatted <- fisher.pvalues.support(amnesia[, 2:3],

+ input = "HG2011")

R> raw.pvalues <- amnesia.formatted$raw

R> pCDFlist <- amnesia.formatted$support

Then we perform the FDR analysis with functions DBH and ADBH (SU and SD) and DBR at
level α = 0.05 including critical values.

R> DBH.su <- DBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)

R> DBH.sd <- DBH(raw.pvalues, pCDFlist, direction = "sd",

+ ret.crit.consts = TRUE)

R> ADBH.su <- ADBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)

R> ADBH.sd <- ADBH(raw.pvalues, pCDFlist, direction = "sd",
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+ ret.crit.consts = TRUE)

R> DBR.su <- DBR(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)

By accessing the critical values we can now generate a plot similar to Figure 2 from [DDR].
Note that both [DBH-SU] and [DBH-SD] are visually indistinguishable from their adaptive
counterparts.
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Figure 5: Critical values for [BH] (green dots), [DBH-SU] (orange dots), [DBH-SD] (red
dots), [A-DBH-SU] (blue dots), [A-DBH-SD] (purple dots), [DBR] (yellow dots). The sorted
raw p values are represented by asterisks.

The rejected hypotheses can be accessed via the command $Indices. The following code
yields some of the values from Table 1 in [DDR]:

R> rej.BH <- length(which(p.adjust(raw.pvalues, method = "BH") <= 0.05))

R> rej.DBH.su <- length(DBH.su$Indices)

R> rej.DBH.sd <- length(DBH.sd$Indices)

R> rej.ADBH.su <- length(ADBH.su$Indices)

R> rej.ADBH.sd <- length(ADBH.sd$Indices)

R> rej.DBR.su <- length(DBR.su$Indices)

R> c(rej.BH, rej.DBH.su, rej.DBH.sd, rej.ADBH.su, rej.ADBH.sd, rej.DBR.su)

[1] 24 27 27 27 27 27

The (continuous) BH rejects only 24 hypotheses whereas all the discrete procedures imple-
mented in DiscreteFDR are able to identify three additional drug candidates potentially
associated with amnesia.



18 DiscreteFDR R package

5.2. Other types of discrete tests

In this section we sketch how DiscreteFDR can be used to analyse arbitrary multiple discrete
tests. Jimenez-Otero et al. (2018) used DiscreteFDR to detect disorder in NGS experiments
based on one-sample tests of the Poisson mean. Rather than reproducing their analysis in
detail, we illustrate the general approach by using a toy example similar to the one in Section
2 and show how the test of the Poisson mean can be accomodated by DiscreteFDR.

To fix ideas, suppose we observe m = 9 independent Poisson distributed counts N1, . . . , N9

(Jimenez-Otero et al. (2018) used this to model the read counts of different DNA bases). We
assume that Ni ∼ Pois(λi) and the goal is to identify cases where λi is larger than some
pre-specified value λ0

i , i.e., we have the (one-sided) multiple testing problem

H0i : λi = λ0
i vs. H1i : λi > λ0

i .

As in Section 2, the goal is to adjust for multiple testing by using the [DBH-SD] procedure
at FDR-level α = 5%. In our example the observations n1, . . . , n9 and parameters λ0

1, . . . , λ0
9

are given as follows:

observations lambda.0

[1,] 3 0.6

[2,] 3 1.2

[3,] 1 0.7

[4,] 2 1.3

[5,] 3 1.0

[6,] 3 0.2

[7,] 1 0.8

[8,] 2 1.3

[9,] 4 0.9

Denote by Gi the distribution of Ni under H0i i.e., Gi(x) = P (Ni ≤ x). For observations
n1, . . . , n9 of N1, . . . , N9 the p values for the above one-sided test are given by

pi = P (Ni ≥ ni) = P (Ni > ni − 1) = Gi(ni − 1),

where Gi(x) = P (Ni > x) = 1−Gi(x) denotes the survival function of the Poisson distribution
with parameter λ0

i . Thus the raw p values are determined by the following R code:

R> raw.pvalues <- sapply(1:m,function(i){ppois(observations[i]-1,lambda.vector[i],

+ lower.tail = FALSE)})

R> raw.pvalues

[1] 0.023115288 0.120512901 0.503414696 0.373176876 0.080301397

[6] 0.001148481 0.550671036 0.373176876 0.013458721

Following the definition of the qpois function in R we define the inverse function of Gi by

Gi
−1

(p) = min{n ∈ N : Gi(n) ≤ p}
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and obtain for the distribution function of the i-th p value under the null

Fi(x) = Gi(Gi
−1

(x)).

Each function Fi is a step function with Fi(0) = 0, Fi(1) = 1 and there exists an infinite
sequence of jumps at locations 1 = x1 > x2 > . . . > xn > xn+1 > . . . > 0 such that
F (xj) = xj for j ∈ N.

Initially it seems that we run into a problem if we want to determine the critical values of
[DBH-SD] since the supports of F1, . . . , F9 are no longer finite (but still discrete). We can deal
with this problem by using the observation from Section 3.1 that it is sufficient to consider
new, restricted supports Ai ∩ [smin, 1] where the lower threshold satisfies

smin ≤ τ min
1 = max {t ∈ A : t ≤ ymin} where ymin =

α

m
·

(
1 +

α

m

)
−1

. (8)

To determine such an smin we procede as follows. Define nmax
i = Gi

−1
(ymin) + 1, tmin

i =
Gi(n

max
i − 1) and set smin = min (tmin

1 , . . . , tmin
9 ). It is easily checked that this choice of smin

satisfies (8). We can determine smin by the following code

R> y.min <- alpha/m*(1+alpha/m)^(-1)

R> n.max <- sapply(1:m,function(w){qpois(y.min,lambda.vector[w],

+ lower.tail = FALSE)})+1

R> t.min <- sapply(1:m,function(w){ppois(n.max[w]-1,lambda.vector[w],

+ lower.tail = FALSE)})

R> s.min <- min(t.min)

R> s.min

[1] 0.0007855354

For determining the restricted supports it is actually more convenient to work with nmax
i than

smin. We can subsequently use these supports as the pCDFlist argument in the usual way
when calling the DBH function:

R> supports <- lapply(1:m,function(w){sort(ppois(0:n.max[w]-1,lambda.vector[w],

+ lower.tail = FALSE))})

R> DBH.sd <- DBH(raw.pvalues,supports,direction = "sd", ret.crit.consts = TRUE)

Figure 6 shows a summary similar to Figure 2. Applying the continuous BH procedure

R> p.adjust(raw.pvalues, method = "BH")

[1] 0.06934586 0.21692322 0.55067104 0.47979884 0.18067814 0.01033633

[7] 0.55067104 0.47979884 0.06056424

results in one rejection at FDR-level α = 5%, whereas the DBH step-up procedure can reject
three hypotheses:
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R> DBH.sd$Adjusted

[1] 0.039602625 0.101622881 0.580898946 0.522450788 0.101509307

[6] 0.001935955 0.626257875 0.522450788 0.033073393

As in Figure 2, Panel (c) presents a graphical comparison between the two procedures applied
to the p values.
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Figure 6: Panel (a) depicts the distribution functions F1, . . . , F9 in various colours, (b) is a
graph of the transformation function ξSD. The uniform distribution function is shown in light
grey in (a) and (b). Panel (c) shows the [BH] critical values (green dots), the DBH step-down
critical values (red dots) and the sorted raw p values (asterisks).

6. Summary and future work

Controlling the FDR for discrete tests is an important goal in many data analytic settings. In
this paper, we introduced the R package DiscreteFDR, implementing procedures from [DDR].
These procedures come with guaranteed FDR control under independence and deal effectively
with the conservativeness encountered in discrete tests.

We hope that our software will make discrete methods for FDR control more accessible to
a wide audience of practitioners. More specifically, DiscreteFDR can be used both in an
’expert’ and a ’standard’ mode. For the data analyst, taking discreteness and multiplicity
issues into account simultaneously may appear to be rather challenging since information on
many distribution functions has to be stored, combined and evaluated. For this reason, we
have included the wrapper function fast.discrete which applies the discrete procedures to a
set of 2 × 2 tables, given by a matrix or data frame, where each contingency table is analysed
by Fisher’s exact test. Thus, this function can be seen as an implementation of a multiple
Fisher test that controls FDR. For controlling the more stringent Familywise Error Rate
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(FWER) for multiple exact Fisher tests, we would like to point out the R package multfisher

which implements the approaches described in Ristl, Xi, Glimm, and Posch (2018). For those
analysts who are looking for a simple to apply, off-the-shelf method, using fast.discrete will
automatically take care of generating the list of (the support of the) distribution functions
pCDFlist, which may otherwise be tedious work. For more expert users who want to use
other tests than Fisher’s exact test, the work flow, described in more detail in Section 5.2,
consists of first generating the pCDFlist list, and then passing this on to the DBH or DBR

functions.

Interfaces that generate pCDFlist from a given data set for a given statistical test are very
helpful tools. Currently, Fisher’s exact test is the only test for which our package supplies
such an interface. In the future, we are planning to include helper functions similar to
fisher.pvalues.support for further tests like the Binomial and Poisson tests.

The R package DiscreteFDR is available from the Comprehensive R Archive network (CRAN)
at https://cran.r-project.org/web/packages/DiscreteFDR/index.html.
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A. Run Time Comparison Tables

m |A| Critical values Run time

250 14442
TRUE 0.08

FALSE 0.03

500 30873
TRUE 0.27

FALSE 0.08

1000 64058
TRUE 0.95

FALSE 0.15

3000 181801
TRUE 7.73

FALSE 0.50

5000 297930
TRUE 22.51

FALSE 0.95

7000 420162
TRUE 44.59

FALSE 1.50

10000 608459
TRUE 104.00

FALSE 2.50

17400 1074398
TRUE 342.88

FALSE 5.66

Table 9: Median run times for the [DBH-SD] procedure.

m |A| Critical values Run time

250 14442
TRUE 0.06

FALSE 0.05

500 30873
TRUE 0.20

FALSE 0.14

1000 64058
TRUE 0.72

FALSE 0.41

3000 181801
TRUE 5.45

FALSE 2.76

5000 297930
TRUE 14.91

FALSE 7.19

7000 420162
TRUE 30.76

FALSE 14.24

10000 608459
TRUE 69.60

FALSE 31.41

17400 1074398
TRUE 227.41

FALSE 105.66

Table 10: Median run times for the [DBH-SU] procedure.
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m |A| Critical values Run time

250 14442
TRUE 0.91

FALSE 0.12

500 30873
TRUE 2.38

FALSE 0.19

1000 64058
TRUE 7.19

FALSE 0.34

3000 181801
TRUE 45.73

FALSE 1.24

5000 297930
TRUE 133.17

FALSE 2.70

7000 420162
TRUE 225.01

FALSE 4.64

10000 608459
TRUE 478.63

FALSE 8.56

17400 1074398
TRUE 1454.77

FALSE 23.52

Table 11: Median run times for the [A-DBH-SD] procedure.

m |A| Critical values Run time

250 14442
TRUE 0.45

FALSE 0.10

500 30873
TRUE 1.16

FALSE 0.19

1000 64058
TRUE 3.63

FALSE 0.48

3000 181801
TRUE 24.54

FALSE 2.83

5000 297930
TRUE 70.62

FALSE 7.29

7000 420162
TRUE 123.09

FALSE 13.64

10000 608459
TRUE 260.41

FALSE 28.05

17400 1074398
TRUE 838.53

FALSE 84.94

Table 12: Median run times for the [A-DBH-SU] procedure.
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m |A| Critical values Run time

250 14442
TRUE 0.49

FALSE 0.11

500 30873
TRUE 1.31

FALSE 0.16

1000 64058
TRUE 3.92

FALSE 0.25

3000 181801
TRUE 26.10

FALSE 0.75

5000 297930
TRUE 70.89

FALSE 1.66

7000 420162
TRUE 129.52

FALSE 2.28

10000 608459
TRUE 266.00

FALSE 2.94

17400 1074398
TRUE 842.2

FALSE 4.77

Table 13: Median run times for the [DBR] procedure at λ = 0.05.
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