
Using the cherry R package

Jelle Goeman Aldo Solari Rosa Meijer

Package version 0.6-12
Date 2018-01-23

Contents
1 Citing cherry 2

2 Introduction 2
2.1 Exploratory inference . 2
2.2 Intersection hypotheses and local tests 3

3 Methods based on p-values 4
3.1 Fisher combinations . 4
3.2 The Simes inequality . 6

4 The general method 8
4.1 Defining a local test . 8
4.2 Performing closed testing . 9
4.3 Defining rejections and the shortlist 10
4.4 Adjusted p-values . 11

5 Region procedure 13
5.1 Using the region procedure . 14
5.2 Confidence sets for the number of false hypotheses in a given set . . . 17

6 DAG multiple testing procedure 18
6.1 Using the DAG procedure . 18
6.2 Confidence sets for the number of false hypotheses in a given set . . . 21

7 Structured Holm: Holm’s method on a DAG 21
7.1 Using the structured Holm procedure 21

1

1 Citing cherry
If you use the cherry package, please cite the paper J. J. Goeman and A. Solari, Multiple
testing for exploratory research, Statistical Science, 26 (4) 584–597.

2 Introduction
The cherry package is a package for multiple hypothesis testing. The approach used
by cherry is specially designed for exploratory inference.

2.1 Exploratory inference
Suppose a researcher has performed an experiment, possibly a genomics experiment
or some other experiment in which a large or small number of statistical hypotheses
have been tested. From the results of the experiment the user wants to select a number
of ‘promising’ results. Which results are considered promising may depend on any
mixture of considerations, such as (unadjusted) significance, effect size, and domain
knowledge. One question the researcher may ask is how many false positive findings
are present in the selected list. This is the question the cherry package is designed to
answer.

The suggested way of working with this package is as follows. Before the data
are gathered, two choices have to be made. The first choice is what hypotheses are
of potential interest. This is the working collection of hypotheses. The second choice
is what statistical test is to be done for each hypothesis, and for each intersection (or
combination) of hypotheses. Examples of such choices are given in the rest of this
vignette. Nothing else has to be decided before data collection. After data collection,
the researcher can study the data as much as he or she likes, before deciding on a col-
lection of hypotheses of interest. This choice, together with the working collection and
the tests is fed into the cherry package, which will return a confidence statement on
the minimum number of false null hypotheses (i.e. true findings) among the selected
set. On the basis of this assessment, the researcher may reevaluate and come up with a
different selection of interesting hypotheses, for which cherry will again give a confi-
dence statement. These confidence statements are not compromised by previous looks
at the data, but remain valid however many times the researcher comes up with a new
set.

In cherry the traditional roles of user and algorithm in multiple testing have been
reversed. In classical multiple testing procedures the user’s task is to set an error rate to
be controlled, and the task of the multiple testing procedure is to decide what hypothe-
ses to reject. In cherry, the user chooses what hypotheses to reject, and the multiple
testing procedure calculates the error rate. This way of working allows the user much
more freedom and control. Most importantly, the error rates that are calculated are not
invalidated by multiple looks at the data, and the user is free to study the data in every
possible way before finally deciding what rejections to make. This makes the method
ideally suited for exploratory research.

Throughout the package and the vignette, the words “true hypothesis” and “false
rejection” are used interchangeably, as rejection of a true hypothesis amounts to a false
rejection. Similarly, “false hypothesis” and “correct rejection” often used as synonyms.

The theory behind the methods is explained in detail in the papers Goeman and
Solari (2011a) and Goeman and Solari (2011b) and we refer readers to these papers for

2

details. In this document, we present some worked out examples to demonstrate how
cherry can be used and how its results should be interpreted. We start in Section 3 with
methods based on p-values that use either Fisher combinations or Simes inequality to
combine p-values. These methods have the advantage that they are quick to use even if
tens of thousands of hypotheses have been tested, but they do depend on assumptions
and cannot always be used. The method based on Simes’ inequality has as an added
advantage that the results of Hommel’s multiple testing procedure can be obtained in
an efficient way, as we will also highlight in this section. Next, Section 4 presents
the general method in its full flexibility. This general method is computationally quite
intensive and should only be used if the total number of hypotheses in the multiple
testing problem is not much greater than 20. In Section 5, a new multiple testing
procedure is introduced that is meant for testing hypotheses that are ordered in space
or time. In the Section 6 a similar procedure is discussed to test hypotheses that are
structured in a Directed Aclycic Graph (DAG) and in Section 7 a variant of Holm’s
method, called "structured Holm" is proposed that is again suited for testing hypotheses
structured in a DAG. Both the region and the DAG procedures (including structured
Holm) allow for post-hoc analysis in the sense that simultaneously valid confidence
intervals for the number of false hypotheses within any selected set of hypotheses can
be constructed.

More methods of different types will be added to the cherry package in the future.
For an explanation of the theory behind the methods, and for more explanation and

examples, see the papers Goeman and Solari (2011a), Goeman and Solari (2011b),
Meijer et al. (2015a), Meijer and Goeman (2015a), Meijer et al. (2015b) and Meijer
and Goeman (2015b).

2.2 Intersection hypotheses and local tests
The cherry package assumes that before data collection the user is able to make a com-
plete list of all hypotheses that are of potential interest. For each of these hypotheses,
a statistical hypothesis test must be formulated. Moreover, statistical tests must also be
formulated for all possible intersections of these chosen hypotheses. An intersection
hypothesis of a collection of hypotheses is a hypothesis that is true if and only if every
hypothesis in the collection of hypotheses is true. For example, if null hypothesis HA

asserts that the mean treatment effect of drug A is zero, and the hypothesis HB as-
serts that the mean treatment effect of drug B is zero, then the intersection hypothesis
HAB = HA∩HB asserts that the treatment effects of both drugs are zero. A statistical
test for an intersection hypothesis is known as a global test or a local test. Examples
of frequently used global and local tests are F-tests in ANOVA models or regression
models, or gene set tests in microarray data analysis.

The user of the cherry package is free to choose any local test that is valid for the
data at hand. The methods in Section 4 allow the user to work with any self-defined lo-
cal test. Unfortunately, these methods are computationally very expensive, and should
only be used when the total number of hypotheses in the multiple testing problem is
not much greater than 20. For specific choices of the local test, that use either Fisher
combinations or Simes inequality, quicker algorithms are available. Special functions
for those local tests are describe in Section 3

3

3 Methods based on p-values
In this section we present some simple methods that can be used when each hypothesis
in the working collection has been tested and given a p-value, and when intersection
hypotheses are tested with simple p-value-based global tests such as Simes inequality
or Fisher combinations. We will illustrate these methods using a data set NAEP taken
from Benjamini and Hochberg (2000)

> library(cherry)
> data(NAEP)

These are p-values for 34 null hypotheses for 34 American states. In each state, a
test was performed for the hypothesis that there was no change in the average eighth-
grade mathematics achievement scores between 1990 and 1992. We can assume the
data for different states, and therefore the p-values, to be independent. The p-values
are sorted here, but that is not necessary for cherry.

The fact that we have p-values means that the choice of a statistical test for the
individual hypotheses has already been made. The only remaining choice is the test for
intersection hypotheses. Two options to test these intersection hypotheses are presented
in this section.

3.1 Fisher combinations
Fisher combinations are based on the fact that if a p-value pi is under the null hy-
pothesis, it is uniformly distributed (or stochastically smaller than that). Consequently,
− log(pi) is exponentially distributed with parameter λ = 1, and −2 log(pi) is χ2

distributed with 2 degrees of freedom. If a number of r p-values is independent, then
−2

∑r
i=1 log(pi) is χ2 distributed with 2r degrees of freedom. This suggests the Fisher

combination test, a test for intersection hypotheses based on negative sums of loga-
rithms of p-values that uses critical values from a χ2-distribution. This test is valid
only when p-values for hypotheses that are under the null are independent. Fisher
combination tests are powerful for detecting the presence of many small effects, but
not so powerful for detecting few larger ones. Functions in cherry that use this test are
the pickFisher and curveFisher functions.

Suppose the researcher has chosen Fisher combinations and, after looking at the
NAEP data, picks the hypotheses HI, MN and IA, and wants to know how many true
and false null-hypotheses there are within this set. This can be found with

> pickFisher(NAEP, c("HI","MN","IA"))

3 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 2; True null-hypotheses <= 1.

The hypotheses are referred to by name in this function call, but they can be referred
to by any other selection method method, such as a logical vector, index or negative
index. We can conclude at the default 95% confidence that among the hypotheses HI,
MN and IA there are at least 2 false hypotheses and at most one true one.

Leaving out the second argument, select, means selecting all 34 hypotheses. This
gives us an upper confidence bound to the number of true hypotheses in the complete
working collection

> pickFisher(NAEP)

4

34 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 19; True null-hypotheses <= 15.

There are at least 19 false null hypotheses, and at most 15 true null hypotheses
among the 34 hypotheses. The 95% confidence set for the number of true null hypothe-
ses among the 34 goes from 0 (lower bound) to 15 (upper bound), and consequently
the same confidence set for the number of false hypothese from 19 to 34. For the se-
lected set HI, MN and IA, the 95% confidence set for the number of true hypotheses
goes from 0 to 1. It is important to know (and central to the method underlying the
cherry package) that all these confidence intervals are simultaneous. There is no need
to correct for multiple testing when selecting the most interesting one from all these
confidence intervals.

Several options can be set in pickFisher. Setting the type I error rate alpha
(default 0.05) changes the confidence level of the statements made. Setting silent to
TRUE suppresses printing to the screen of the result. The pickFisher function’s
return value is the lower bound of the number of false null hypotheses, i.e. true findings.

> res <- pickFisher(NAEP, silent=TRUE)
> res

[1] 19

The curveFisher function can give some additional information over
pickFisher. Called without further arguments, the function returns lower bounds
for the number of false null hypotheses, like pickFisher, but simultaneously for se-
lecting the hypotheses with the smallest 1,2,3,. . . , p-values. The results are displayed
in a graph unless the plot argument is set to FALSE. From these results, we see with
95% confidence that 19 false null hypotheses are present among all 34 hypotheses,
as we saw before, but also that these 19 false null hypotheses must be among the 25
hypotheses with smallest p-values.

> res <- curveFisher(NAEP)
> res

RI NC HI MN NH IA CO TX ID AZ KY OK CT NM WY FL PA NY OH CA
1 2 3 4 4 5 6 7 8 9 10 10 11 11 12 13 14 15 15 16

MD WV VA WI IN LA MI DE ND NE NJ AL AR GA
17 18 18 18 19 19 19 19 19 19 19 19 19 19

The curveFisher function may be further tailored. The select argument can be used
to consider only a subset of the hypotheses, and the function will return the number of
false null hypotheses among the 1,2,. . . smallest p-values in the selected set. Alterna-
tively, the order argument can be used to set the order in which hypotheses should be
selected, rather than taking the order of increasing p-values. Compare

> curveFisher(NAEP, select=c(8,3,4,2), plot=FALSE)

NC HI MN TX
1 2 3 3

> curveFisher(NAEP, order=c(8,3,4,2), plot=FALSE)

5

> curveFisher(NAEP)

0 5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

number of hypotheses

nu
m

be
r

of
 fa

ls
e

nu
ll−

hy
po

th
es

es

false null−hypotheses (95% conf.)
others

TX HI MN NC
0 1 2 3

Here, the first call uses the selection order NC, HI, MN, TX, determined by the
p-values; the second uses the selection order TX, HI, MN, NC, given by the input.
We interpret the second result as follows. Choosing TX only we have a result of 0,
which means that we do not have 95% confidence that TX corresponds to a false null
hypothesis. The second result is 1, which means that choosing both TX and HI, we
have detected at least one false null hypothesis with 95% confidence. The third result,
2, refers to selecting TX, HI and MN, the fourth result to the collection of all four
hypotheses.

3.2 The Simes inequality
The Simes inequality says that for a sequence of ordered p-values p(1), . . . , p(r), under
the null hypothesis we have p(i) ≥ iα/r simultaneously for all i with probability at
least 1− α. This inequality holds if p-values are independent, as shown by Simes, but
also under some forms of positive correlation, as shown by Sarkar and Chang (1997).
Simes’ inequality suggests Simes’ test, a test that rejects an intersection hypothesis of
r hypotheses if either the smallest p-value is smaller than α/r or the second smallest
is smaller than 2α/r, or . . . , or the largest p-value is smaller than rα/r = α. This
test can be used as a local test in the cherry package. It is valid if p-values of true null
hypotheses are always either independent or positively correlated. An alternative, more

6

conservative test was formulated by Hommel; this test is valid whatever the distribution
of the p-values.

To be able to use the functions pickSimes and curveSimes which are com-
parable to the pickFisher and curveFisher functions above, one extra prepar-
ing step has to be made. First, a hommel object has to be prepared, by using the
hommelFast function. This function only has two arguments. The first argument is
the pvalues argument that expects a vector of p-values. The second argument is the
simes argument, that can be set to TRUE (which is the default) if a Simes’ test has to
be carried out or to FALSE if one wants to carry out the more conservative Hommel
test. The function returns a hommel object, that can subsequently be used as input for
the pickSimes and curveSimes functions. In addition, the hommel object can be
of direct interest if one wants to find the adjusted p-values as given by Hommel’s mul-
tiple testing procedures corresponding to the unadjusted p-values given as input. These
adjusted p-values can be obtained by the pvalue function. For more information on
the underlying method, we refer the reader to the paper Meijer et al. (2015b).

Apart from the first argument, which is replaced by the hommel object and the
hommel argument that has been replaced by the simes argument in the hommelFast
function, the pickSimes and curveSimes functions use the same options and ar-
guments as the pickFisher and curveFisher functions.

> hom <- hommelFast(NAEP)
> pickSimes(hom, c("HI","MN","IA"))

3 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 2; True null-hypotheses <= 1.

> curveSimes(hom, plot=FALSE)

RI NC HI MN NH IA CO TX ID AZ KY OK CT NM WY FL PA NY OH CA
1 2 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6

MD WV VA WI IN LA MI DE ND NE NJ AL AR GA
6 6 6 6 6 6 6 6 6 6 6 6 6 6

Comparing these results with the ones obtained for the Fisher combinations above,
we see that the Simes test allows fewer rejections. This is not generally true, and Simes
may be more powerful in other data sets. In general, Fisher combinations can be said to
have more power if there are many small effect sizes, whereas Simes has more power
in the presence of a few stronger effects.

The more conservative Hommel variant that makes no assumptions on the p-value
distribution can be obtained by setting simes=FALSE while creating the hommel ob-
ject. This variant is more conservative than the one based on the regular Simes test.

> hom <- hommelFast(NAEP, simes=FALSE)
> pickSimes(hom, c("HI","MN","IA"))

3 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 2; True null-hypotheses <= 1.

> curveSimes(hom, plot=FALSE)

RI NC HI MN NH IA CO TX ID AZ KY OK CT NM WY FL PA NY OH CA
1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

MD WV VA WI IN LA MI DE ND NE NJ AL AR GA
4 4 4 4 4 4 4 4 4 4 4 4 4 4

7

4 The general method
There are many more possibilities than Fisher combinations or Simes inequality to
make local tests. The closed function and its derivatives in cherry allow users
to work with any type of local test. When working with such a user-defined lo-
cal test, the output possibilities are greater than with the simple pickFisher and
curveFisher functions above.

4.1 Defining a local test
We first illustrate the general method with the same local test as was used there: the
Fisher combinations.

To illustrate these data we cannot take the NAEP data, as for 34 hypotheses the
calculations will take too long. In fact, the code will not run for a collection of more
than 31 hypotheses. We shall illustrate the general approach with a very small data set
of 4 p-values, taken from Huang and Hsu (2007), but we take them out of the context
they were presented in in that paper.

> ps <- c(A = 0.051, B = 0.064, C = 0.097, D = 0.108)

To define a local test, we must create an R function, such as the following

> mytest <- function(hypotheses) {
+ p.vals <- ps[hypotheses]
+ m <- length(p.vals)
+ statistic <- -2 * sum(log(p.vals))
+ p.out <- pchisq(statistic, df=2*m, lower.tail=FALSE)
+ return(p.out)
+ }

This function takes as input the names of the hypotheses that the intersection hy-
pothesis is an intersection of, and returns a p-value, as calculated by the Fisher combi-
nations test. Note that the function references the ps data we’ve just created. We can
now call our test with

> mytest("A")

[1] 0.051

> mytest(c("B","C","D"))

[1] 0.02347135

> mytest(names(ps))

[1] 0.008391265

Note that calling mytest on a single hypothesis name just returns the p-value of
that hypothesis.

A user can define their own favorite local test in exactly this way, by creating an R
function that takes a vector of hypothesis names as input and gives a valid p-value for
the corresponding intersection null hypothesis as output.

8

The mytest function used p-values as input data. This is not necessary or even
typical. As a second example, we present a function for a local test based on the F-test
in a multiple linear regression using the LifeCycleSavings example data. The
null hypothesis of this test is the hypothesis that the covariates in its hyps argument all
have regression coefficient zero in the multiple regression model fitted in fullfit
below.

> hypotheses <- c("pop15", "pop75", "dpi", "ddpi")
> fullfit <- lm(sr~., data=LifeCycleSavings)
> myFtest <- function(hyps) {
+ others <- setdiff(hypotheses, hyps)
+ form <- formula(paste(c("sr~", paste(c("1", others), collapse="+"))))
+ anov <- anova(lm(form, data=LifeCycleSavings), fullfit, test="F")
+ pvalue <- anov$"Pr("[2] # NB replace Pr by P for for R < 2.14.0
+ return(pvalue)
+ }
> myFtest(c("pop15", "pop75"))

[1] 0.004834923

4.2 Performing closed testing
Next, we can perform the closed testing procedure using this definition of the local test.
This is done using the function closed, as follows

> ct <- closed(mytest, names(ps))

Note that there is no need anymore to specify the data set that is used, because the
reference to the data set is contained in the definition of mytest. The calculations can
take a large amount of time, especially if the number of hypotheses is large.

By default, all tests are performed at level alpha = 0.05 and only rejection or ac-
ceptance of hypotheses is stored, not adjusted p-values. It is possible to change the
alpha argument to a different value, or to do the calculations using adjusted p-values
so that the choice of the significance level may be postponed. This will be explained
below in Section 4.4.

Using the ct object created by the call to closed we can now perform analysis
by asking for the number of true and false hypotheses among certain sets of hypotheses
of interest. Just displaying the object,

> ct

Closed testing result on 4 elementary hypotheses.
At confidence level 0.95: False hypotheses >= 2; True hypotheses <= 2.

gives a lower confidence bound on the number of false hypotheses among the collec-
tion of all four tested hypotheses. We conclude that there are at least two false null
hypotheses among the four tested ones. If we are interested in a subset of hypotheses,
we can use the pick function.

> pick(ct, c("A", "B"))

2 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 1; True null-hypotheses <= 1.

9

> pick(ct, c("C", "D"))

2 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 0; True null-hypotheses <= 2.

This gives us confidence limits for the number of false hypotheses in each chosen
subset. The pick function returns the lower bound on the number of false hypotheses.
It also displays the information on the screen, but this can be switched off if desired
by setting the silent argument to TRUE. If the second argument to pick is left out,
it is assumed that the set of all hypotheses is meant. To get back the names of the
hypotheses, type

> hypotheses(ct)

[1] "A" "B" "C" "D"

From the results of pick above we see that there is evidence for one false hypothe-
sis among A and B, but no such evidence among C and D. This seems to contradict the
earlier statement that there was evidence for at least two false null hypotheses among
the total set of A, B, C and D. However, this is only an apparent contradiction: the
amount of evidence for a second false null hypothesis is not sufficient in the observed
data of A and B alone, nor in the data of C and D alone, but the combined evidence of
the data from all four hypotheses is sufficient.

Just like pickSimes and pickFisher, pick returns the lower confidence
bound for the number of false null hypotheses as a number.

> res <- pick(ct, c("C", "D"), silent=TRUE)
> res

[1] 0

4.3 Defining rejections and the shortlist
The pick function allows users to check out any desired set of hypotheses, but gives
no guidance as to what sets of hypotheses to probe. Two other functions can help to
see structure in the results of the closed testing procedure.

The first of these is the defining function, which calculates the defining rejec-
tions. The defining rejections are a collection of sets of hypotheses with the property
that for each set in the collection we can be confident that it contains at least one false
null hypothesis. The collection of defining hypotheses is minimal in the sense that there
are no smaller sets for which the same statement holds. In our ct object, the defining
rejections are

> defining(ct)

[[1]]
[1] "A" "B"

[[2]]
[1] "A" "C"

[[3]]

10

[1] "B" "C"

[[4]]
[1] "A" "D"

[[5]]
[1] "B" "D"

For each of the listed defining sets, we can conclude that they contain at least one
false hypothesis. For example, at least one of A and B must be false, but also at least
one of A and C, and at least one of B and C. If any of the defining sets is a singleton,
we can confidently conclude that the corresponding hypothesis is a false one.

The dual of the defining sets is the shortlist, introduced by Meinshausen (2011).
Just like the defining sets, the shortlist is a collection of sets of hypotheses, but for
the shortlist collection we can make the statement that at least one of the sets in the
collection contains only false hypotheses. In the example,

> shortlist(ct)

[[1]]
[1] "A" "B"

[[2]]
[1] "B" "C" "D"

[[3]]
[1] "A" "C" "D"

the shortlist contains three sets. We conclude that either both hypotheses A and B are
false, or all three hypotheses A and C and D or all three hypotheses B and C and D.
Just as with the defining rejections, the shortlist only gives a minimum at the chosen
significance level. The possibility that all four hypotheses are false, for example, is
equally compatible with the results of the closed testing procedure. However, the true
set must contain at least one of the shortlist sets completely.

4.4 Adjusted p-values
Earlier calculations were all done at a significance level alpha of 0.05, and the results
only used the rejection status of hypotheses. There is additional information is the p-
values, however, and the closed function may also be used with adjusted p-values
rather than a hard rejection yes/no. By definition, an adjusted p-value is the smallest
alpha-level at which a certain hypothesis can be rejected in the multiple testing proce-
dure. Using adjusted p-values is comparable to not setting the alpha level in advance,
but simultaneously doing the same test procedure at all alpha levels. To use adjusted
p-values, use

> cta <- closed(mytest, names(ps), alpha = NA)

Calculation times based on adjusted p-values can be substantially longer because
more tests need to be calculated. If the user is not interested in adjusted p-values above
a certain threshold, say 0.1, an alternative call is

11

> ctb <- closed(mytest, names(ps), alpha = 0.1, adjust = TRUE)

In this case, all adjusted p-values greater than the chosen threshold will be set to 1.
The pick function works slightly differently if adjusted p-values were used. It

simultaneously presents results for all levels of alpha.

> pick(cta)

alpha confidence true<= false>=
1 0.008391265 0.9916087 3 1
2 0.023471346 0.9765287 2 2
3 0.058232610 0.9417674 1 3
4 0.108000000 0.8920000 0 4

The results should be read as follows. Up to α = 0.0084 we only have the trivial
result that the number of true hypotheses is ≤ 4. From α = 0.0084 to α = 0.023 we
get the result that at least one hypothesis is false; from α = 0.023 to α = 0.058, we
get at least false two hypotheses, etcetera. In terms of adjusted p-values, the adjusted
p-value for the statement that there are ate least two false null hypotheses among the
four can be read off as 0.02347. The confidence column is simply 1− α.

To extract adjusted p-values directly, there is the adjusted function. Calling
adjusted on a set of hypotheses without extra arguments returns the adjusted p-
value of the corresponding intersection hypothesis. An additional third argument n can
be given to get the adjusted p-value for making the statement that at least n + 1 false
null hypotheses occur in the chosen set, i.e. corresponding to the null hypothesis that
at most n false null hypotheses are present.

> adjusted(cta, c("A", "B", "C"))

[1] 0.01314629

> adjusted(cta, c("A", "B", "C"), n=1)

[1] 0.03775654

We conclude that the compound hypothesis that no hypothesis among A, B and C is
false, and the compound hypothesis that at most one among A, B, and C is false are
both rejected at α = 0.05, with adjusted p-values 0.013 and 0.038, respectively.

The pick function has one other additional feature in that the number in the table
can be visualized in a plot. Setting plot = TRUE in pick results in a plot such as
in Figure 1. In this plot, the adjusted p-values can be read off as tail probabilities in
the plotted “distribution”. These values are displayed at the top of the plot. The plot
argument is ignored if adjusted p-values were not calculated.

The defining and shortlist functions can be used for objects with adjusted
p-values, but a specific value of alpha must be specified.

> shortlist(cta, alpha=0.05)

[[1]]
[1] "A" "B"

[[2]]

12

> pick(cta, names(ps), plot=TRUE)

0 1 2 3 4

True hypotheses

C
on

fid
en

ce
 p

ro
ba

bi
lit

y
m

as
s

fu
nc

tio
n

0.
0

0.
2

0.
4

0.
6

0.
8

0.108 0.058 0.023 0.008

Figure 1: pick(cta, names(ps), plot=TRUE)

[1] "B" "C" "D"

[[3]]
[1] "A" "C" "D"

It is also possible to set the alpha level to be used in such cases in advance with the
alpha function. Setting

> alpha(cta) <- 0.05

will cause functions such as pick, defining, shortlist to work as if alpha
= 0.05 was set in advance. The object can be reset to adjusted p-values with

> alpha(cta) <- NA

5 Region procedure
In addition to the closed testing procedure, there is another multiple testing method
implemented in the cherry package. The region procedure, which is described in detail
in Meijer et al. (2015a), is a multiple testing method for hypotheses that are ordered in
space or time. Given such hypotheses, the elementary hypotheses as well as regions
of consecutive hypotheses are of interest. Each region hypothesis will be denoted by

13

Hij , where i and j specify the left and right boundary of the corresponding region.
The region procedure is a procedure that starts with testing the global null-hypothesis
and when this hypothesis can be rejected it continues with further specifying the exact
location/locations of the effect present. In every step of the procedure, only those
hypotheses Hij are tested for which all Hkl with k ≤ i ≤ j ≤ l are already rejected.

5.1 Using the region procedure
To perform the region procedure on a given dataset, we can use the function
regionmethod. What is needed for the function to work is a local test that has a
left and rightbound as input and returns a p-value for the corresponding region hypoth-
esis, and a weight vector that indicates the weight each elementary hypothesis should
receive. The length of this vector should equal the number of elementary hypotheses.

To illustrate the method, we first generate some data. Let us take a response vector
Y and a matrix X of covariates that is generated in such a way that Y is associated
with certain regions of the covariates.

> set.seed(1)
> n=100
> p=20
> X <- matrix(rnorm(n*p),n,p)
> beta <- c(rep(0,2),rep(1,4),rep(0,2),rep(1,4),rep(0,2),
+ rep(1,4),rep(0,2))
> Y <- X %*% beta + rnorm(n)

Y is a vector of length 100, whereas X is a matrix of dimension 100 × 20. Of the
20 covariates, only 12 covariates are associated with the response. They are organized
in 3 groups of 4 covariates each. The intervals (3,6), (9,12) and (15,18) are associated
with the response.

Furthermore, we have to specify a local test. We choose to work with an F -test,
which can be defined in the following way:

> mytest <- function(left,right)
+ {
+ X <- X[,(left:right),drop=FALSE]
+ lm.out <- lm(Y ~ X)
+ x <- summary(lm.out)
+ return(pf(x$fstatistic[1],x$fstatistic[2],x$fstatistic[3],
+ lower.tail=FALSE))
+ }

The region procedure can now be used on the design matrix X to find which (re-
gions of) covariates are associated with the response by using the following function
call:

> reg <- regionmethod(rep(1,p), mytest, all_pvalues=TRUE, isadjusted=TRUE)
> summary(reg)

Region method result on 20 elementary hypotheses.
There are 179 region hypotheses rejected out of a total of 210
at an alpha-level of 0.05.

14

Using the function regionmethod results in a region object. From this
region object we can retrieve different information. By using the show or summary
function, we can see how many of the region hypotheses could be rejected on the given
α-level as specified by the alpha_max argument, which is 0.05 by default. In our ex-
ample, we see that 179 region hypotheses could be rejected (out of a total number of
210). All these regions can be summarized by the regions that could be rejected them-
selves, but for which all smaller regions they contain could not get rejected. We will
call those smallest rejectable regions "implications" (idential to the defining rejections
as introduced in subsection 4.3).

To get the implications from a region object, we can use the implications
function. This function requires a region object as argument, and has an optional ar-
gument alpha. If alpha is not specified, the implications corresponding to the argument
alpha_max of the region object are calculated. In our example, the implications look
like this:

> implications(reg)

left right adj. pvalue
[1,] 4 4 0.0000931957
[2,] 5 5 0.0470085586
[3,] 9 9 0.0069271227
[4,] 10 10 0.0390512731
[5,] 12 15 0.0494077361
[6,] 16 16 0.0106803872
[7,] 17 17 0.0021602152

Of these 7 implications, 6 correspond to an elementary hypothesis. Only the fifth
implication corresponds to a region hypothesis with length larger than 1, namely to
the region hypothesis of region (12,15). If we would want to have the implications
corresponding to a different α-level, we could either use the regionmethod function
again and use a different value for alpha_max, or we could use our current region
object and change the argument alpha in the implications function. However,
the second approach will only work if the value of alpha is smaller than the value
alpha_max that was used to make the region method. Furthermore, the all_pvalues
as well as the isadjusted argument in the call to the regionmethod function that was
used to create the region object has to be set to TRUE. Only then, new implications
can be computed. In our example, we set all_pvalues=TRUE, and we used the default
value of 0.05 for alpha_max, so we can use the implications function with alpha
set to all values smaller than 0.05. For example, if we want to know what implications
we would have had if we controlled the FWER on 0.01, we can do this:

> implications(reg, alpha=0.01)

left right adj. pvalue
[1,] 4 4 0.0000931957
[2,] 9 9 0.0069271227
[3,] 10 11 0.0065161207
[4,] 15 16 0.0046725078
[5,] 17 17 0.0021602152

On this lower α-level, only 3 elementary hypotheses could be rejected.

15

We see that implications come with a p-value, that can either be the true adjusted p-
values (if the isadjusted argument of the regionmethod was set to TRUE) or just the
α-level on which the FWER is controlled. To get p-values of rejected regions that do
not correspond to an implication, we can use the pvalue method that is available for
region objects. To be able to use this function, we again need to set the all_pvalues
argument in the regionmethod function to TRUE. In our example, we used the right
parameter settings, and we can thus ask for any adjusted p-value. We could for example
get the adjusted p-value of the overall null-hypothesis, corresponding to region (1,20)
as follows:

> pvalue(reg,1,20)

[1] 1.75461e-40

Instead of summarizing the results of the region procedure by looking at the
implications, we can also visualize our results by representing the region hypotheses
by a graph and drawing this graph. There are two functions that can be used in order to
do so, namely regionplot and regionplot2. The first function does not display
the nodes and edges of the region graph separately, but draws a polygon that follows
the original graph structure. The regionplot2 function visualizes the full graph
with its nodes and edges. Although the information given by the list of all mplications
and the plots are identical, at first sight the implications are more precise, but the plots
give an immediate idea of which regions are interesting.

For our example, the plots can be made in the following way:

> regionplot(reg)

R
eg

io
n

Le
ng

th

1
6

10
15

20

rejected hypotheses
unrejected hypotheses

and

16

> regionplot2(reg)
R

eg
io

n
Le

ng
th

1
6

10
15

20

rejected hypotheses
unrejected hypotheses

The plot functions do also have an optional alpha argument, that can be used in the
same way as described for the implications function.

5.2 Confidence sets for the number of false hypotheses in a given
set

Just as in the case of a closed testing procedure, while using the region procedure we
are able to make simultaneous 100(1 − α)% confidence sets for the number of false
(or true) hypotheses within a given set S of elementary hypotheses. Given a region
object, we can calculate the minimal number of false elementary hypotheses (i.e. true
findings) in any given set of elementary hypotheses. This set has to be specified by
a list of regions. For example, if we want to know how many false hypotheses there
should at least be in the set of the first and last 5 elementary hypotheses from our 20
elementary hypotheses, we can specify a list as follows: list(c(1,5),c(16,20)) and use
the function regionpick to calculate the lower confidence bound for the number of
false hypotheses in this set:

> regionpick(reg, list(c(1,5),c(16,20)))

At confidence level 0.95: False null-hypotheses >= 4

We can also look at just one set, for example the total set of elementary hypotheses:

> regionpick(reg, list(c(1,20)))

At confidence level 0.95: False null-hypotheses >= 7

17

We see that at least 7 out of our 20 elementary hypotheses have to be false with
probability (1 − α), where α is still the α on which the FWER is controlled in the
region procedure, which is 0.05 in our example. This is in agreement with the earlier
shown implications, which showed that 6 elementary hypothesis were rejected and one
larger region, in which at least one of the elementary hypotheses had to be false as well.

Again, there is an optional argument alpha that can be used in the same way as in
the other functions.

6 DAG multiple testing procedure
In addition to the closed testing and region procedure, there is another multiple testing
method implemented in the cherry package. The DAG procedure, which is described in
detail in Meijer and Goeman (2015a), is a multiple testing procedure that tests hypothe-
ses that are structured in a Directed Acyclic Graph (DAG). Each node in the DAG will
represent an hypothesis, whereas the edges represent the underlying subset relations.

Our proposed method is a top-down method. This means that we start testing at
the root(s) of the graph, so at a node without any parents. If the null-hypothesis cor-
responding to this root node can be rejected, we test the children of the root node, and
we continue to test only those nodes that have at least one of their parents or all their
parent nodes rejected. The procedure that tests a node when at least one of its parents
is rejected is called the any-parent variant, the procedure that tests a node only when
all its parents are already rejected is called the all-parent variant.

Because the DAG is based on subset relations, each DAG has the so-called
"oneway" property, which means that the falsehood of a node implies the falsehood of
its parents. Some DAGs have, in addition to this property, a second property: namely
that the falsehood of a node implies the falsehood of at least one of its children. If a
DAG has this property, we say that the DAG has a "twoway" property. An example of
such a DAG would be the DAG consisting of several gene sets and all the individual
genes. In that case, each node will be the union of its children, which is a sufficient
condition to have the twoway property. In DAGs with twoway logical relations, more
powerful methods are possible.

6.1 Using the DAG procedure
To perform the DAG procedure on a given dataset, we first have to create a DAG stuc-
ture. Given a collection of sets/hypotheses that we want to test, the corresponding
DAG can be formed by using the function construct. This function needs a list of
sets as input argument and returns a DAGstructure object. In the process, it is also
checked whether all provided sets are unique, and if not, duplicates will be filtered out.
A warning will be given in case this happens. To test the (unique) sets in the DAG
structure, we can now use the function DAGmethod. This function needs the just cre-
ated DAGstructure object as its first argument. Furthermore, what is needed for the
function to work is a local test that has a set as input and returns a p-value for the corre-
sponding hypothesis. Other options that can be specified are whether we want to have
the any-parent or the all-parents variant, and whether we want to optimize our method
further (in case we have a DAG with the twoway property). For the optimization step,
we need a solver for (Integer) Linear Programs. A freely available R-package that does
so is lpSolve. However, for large graphs it is often recommendable to choose some
commercial software package. Our choice was to support the R-package gurobi. For

18

academic use, this package is free, and can be found on the www.gurobi.com. If this
package is not installed, we will automatically use lpSolve for all calculations.

To illustrate the method, we first generate some data. Let us take a response vector
Y of length 100, and a matrix X of 4 covariates that is generated in such a way that Y
is associated with only the second and the third covariate.

> set.seed(1)
> n=100
> p=4
> X <- matrix(rnorm(n*p),n,p)
> beta <- c(0,0.5,0.5,0)
> Y <- X %*% beta + rnorm(n)

Let us assume we are interested in testing all covariates separately, but also in the
set of all covariates simultaneously (corresponding to the null-hypothesis that none of
the covariates is associated with the response), the set of covariate 1 and 2 together, the
set of covariate 2,3 and 4 togehter, and the set of covariate 2 and 3. This would result
in the following list:

> sets <- list(c(1,2,3,4), c(1,2), c(2,3,4), c(2,3), 1, 2, 3, 4)
> names(sets) <- c(1234, 12, 234, 23, 1, 2, 3, 4)

Based on these sets, we can make the corresponding graph structure by using the
function construct:

> struct <- construct(sets)

From this object we can check whether our desired DAG has twoway properties
(which it should have, because all individual covariates are added):

> istwoway(struct)

[1] TRUE

For the actual DAG multiple testing method to work, we additionally have to spec-
ify a local test. We choose to work with an F -test, which can be defined in the following
way:

> mytest <- function(set)
+ {
+ X <- X[,set,drop=FALSE]
+ lm.out <- lm(Y ~ X)
+ x <- summary(lm.out)
+ return(pf(x$fstatistic[1],x$fstatistic[2],
+ x$fstatistic[3],lower.tail=FALSE))
+ }

The DAG procedure can now be used on the design matrix X to find which (sets
of) covariates are associated with the response by using the following function call:

> DAG <- DAGmethod(struct, mytest, isadjusted=TRUE)
> summary(DAG)

19

The all-parents method result on 8 hypotheses.
There are 6 hypotheses rejected out of a total of 8
at an alpha-level of 0.05.

By default, the all-parents procedure is chosen and the (possible) twoway structure
of the DAG is not used to further optimize the method. To use the any-parents proce-
dure or different optimization options, the arguments method and optimization can be
set to different values than their default settings of respectively "all" and "none".

Using the function DAGmethod results in a DAG object. From this DAG object we
can retrieve different information. By using the show or summary function, we can
see how many of the hypotheses could be rejected on the given α-level as specified
by the alpha_max argument, which is 0.05 by default. In our example, we see that 6
sets could be rejected (out of a total number of 8). All these sets can be summarized
by the smallest sets that could be rejected themselves, but for which all smaller sets
they contain (i.e. their offspring) could not get rejected. We will call those smallest
rejectable sets "implications".

To get the implications from a DAG object, we can use the implications func-
tion. This function only requires a DAG object as argument. In our example, the impli-
cations look like this:

> implications(DAG)

2 3
3.834613e-05 4.362210e-04

We see that the 6 rejections can be summarized by the rejections of the set only
consisting of covariate 2, and the set only consisting of covariate 3. The other 4 rejec-
tions are larger sets containing one or both of the covariates. We see that implications
come with a p-value, that can either be the true adjusted p-values (if the isadjusted ar-
gument of the DAGmethod was set to TRUE) or just the α-level on which the FWER
is controlled. To get p-values of rejected sets that do not correspond to an implication,
we can use the pvalue method that is available for DAG objects. The pvalue func-
tion expects a DAG object and an index or name as input arguments. The index must
be the index of the set for which you want to know the p-value in the list of sets that
is stored in the DAGstructure object. Normally, this will be the same index as the
index found in the original list of sets, that is given as argument for the construct
function, but if there were duplicate sets in the original list, these duplicates will be
filtered by the construct function, and then the index can be different as well.

In our example all sets are unique, so the original list will be identical to the
list stored in the DAGstructure object. To get the adjusted p-value of the null-
hypothesis corresponding to the fourth set, which is the set consisting of covariate 2
and 3 we can thus use the following:

> pvalue(DAG,4)

23
1.741771e-08

or (is we use the name of the set)

> pvalue(DAG, "23")

23
1.741771e-08

20

6.2 Confidence sets for the number of false hypotheses in a given
set

Just as in the case of a closed testing and the region procedure, while using the DAG
procedure we are able to make simultaneous 100(1−α)% confidence sets for the num-
ber of false (or true) rejection within a given set S of elementary hypotheses. We can
even do more this time, because we can make such a confidence set for the number of
false rejection within any collection of hypotheses that we tested in our DAG proce-
dure. In order to do so, we will again need an ILP solver. Given a DAG object, we can
calculate the minimal number of false elementary hypotheses (i.e. true findings) in any
given set of hypotheses. This set has to be specified by a vector of indices or names.
For example, if we want to know how many false hypotheses there should at least be
in the family of the first three sets we wanted to test, we can specify a vector 1:3, and
use the function DAGpick to calculate the lower confidence bound for the number of
false sets/hypotheses in this family:

> DAGpick(DAG, 1:3)

[1] 3

We see that the minimal number of sets that can be rejected with (1 − α)% confi-
dence within these first 3 sets, is 3. An almost trivial observation, since all these sets
were indeed rejected by our DAG method.

7 Structured Holm: Holm’s method on a DAG
In addition to the all-parents and the any-parent method of the previous section, in this
section we will describe a third multiple testing method that can be used on hypotheses
that are structured in a Directed Acyclic Graph. In contrast to the previous methods,
which were top-down methods, the new method, called "structured Holm" tests all
hypotheses simultaneously in every step. In practice, this comes down to trying to
reject the hypothesis with the smallest p-value in every step of the algorithm, while
adjusting for the fact that this hypothesis is one of many still unrejected hypotheses.

The method is a variant of Holm’s method in which the DAG structure is taken into
account. When the DAG has oneway properties, the method uses the DAG structure
to reject all ancestor hypotheses of a rejected node. In case of twoway properties,
the method can be made more powerful by estimating how many of the remaining
hypotheses can still be simultaneously true.

7.1 Using the structured Holm procedure
To perform the structured Holm procedure on a given dataset, as before, we first
have to create a DAG stucture. Given a collection of sets/hypotheses that we want
to test, the corresponding DAG can be formed by using the function construct.
For more information on this function, we refer the reader to the previous section. The
DAGstructure object can subsequently be used as input in the structuredHolm
function. Apart from this object, which is the functions first argument, a local test (or
a vector of pre-calculated p-values) is needed. Other options that can be specified
are whether we want to have adjusted p-values (by setting the isadjusted argument to
TRUE) and whether we want to optimize our method further (in case we have a DAG

21

with the twoway property). For the optimization step, the same ILP solvers will be
used as described in the previous section. For large datasets, it will often be advisable
to set the isadjusted argument to FALSE to save computation time.

To illustrate the method, we first generate some data. Let us take a response vector
Y of length 100, and a matrix X of 4 covariates that is generated in such a way that Y
is associated with only the second and the third covariate.

> set.seed(1)
> n=100
> p=4
> X <- matrix(rnorm(n*p),n,p)
> beta <- c(0,0.5,0.5,0)
> Y <- X %*% beta + rnorm(n)

Let us assume we are interested in testing all covariates separately, but also in the
set of all covariates simultaneously (corresponding to the null-hypothesis that none of
the covariates is associated with the response), the set of covariate 1 and 2 together, the
set of covariate 2,3 and 4 togehter, and the set of covariate 2 and 3. This would result
in the following list:

> sets <- list(c(1,2,3,4), c(1,2), c(2,3,4), c(2,3), 1, 2, 3, 4)
> names(sets) <- c(1234, 12, 234, 23, 1, 2, 3, 4)

Based on these sets, we can make the corresponding graph structure by using the
function construct:

> struct <- construct(sets)

From this object we can check whether our desired DAG has twoway properties
(which it should have, because all individual covariates are added):

> istwoway(struct)

[1] TRUE

For the structured Holm multiple testing method to work, we additionally have to
specify a local test. We choose to work with an F -test, which can be defined in the
following way:

> mytest <- function(set)
+ {
+ X <- X[,set,drop=FALSE]
+ lm.out <- lm(Y ~ X)
+ x <- summary(lm.out)
+ return(pf(x$fstatistic[1],x$fstatistic[2],
+ x$fstatistic[3],lower.tail=FALSE))
+ }

The structured Holm procedure can now be used on the design matrix X to find
which (sets of) covariates are associated with the response by using the following func-
tion call:

22

> DAG <- structuredHolm(struct, mytest, isadjusted=TRUE)
> summary(DAG)

The structured holm method result on 8 hypotheses.
There are 6 hypotheses rejected out of a total of 8
at an alpha-level of 0.05.

The individual adjusted p-values can easily be retrieved by the pvalue function.

> pvalue(DAG)

1234 12 234 23
1.573847e-08 4.137205e-05 1.573847e-08 1.573847e-08

1 2 3 4
Inf 4.137205e-05 4.362210e-04 Inf

The adjusted p-values that are larger than the chosen alpha_max value (which is
0.05 by default) are set to Inf.

The structuredHolm function has a DAG object as its output, as was the case
for the all-parents and any-parent method, and on this DAG object all methods can be
applied that were described in the previous section.

References
Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discov-

ery rate in multiple testing with independent statistics. Journal of Educational and
Behavioral Statistics, 25(1):60–83.

Goeman, J. and Solari, A. (2011a). Multiple testing for exploratory research. Statistical
Science, 26(4):584–597.

Goeman, J. and Solari, A. (2011b). Rejoinder. Statistical Science, 26(4):608–612.

Huang, Y. and Hsu, J. (2007). Hochberg’s step-up method: cutting corners off holm’s
step-down method. Biometrika, 94(4):965–975.

Meijer, R. and Goeman, J. (2015a). A multiple testing method for hypotheses struc-
tured in a directed acyclic graph. Biometrical Journal, 57(1):123–143.

Meijer, R. and Goeman, J. (2015b). Multiple testing of gene sets from gene ontology:
possibilities and pitfalls. Submitted for publication.

Meijer, R., Krebs, T., and Goeman, J. (2015a). A region-based multiple testing method
for hypotheses ordered in space or time. Statistical Applications in Genetics and
Molecular Biology, 14(1):1–19.

Meijer, R., Krebs, T., Solari, A., and Goeman, J. (2015b). Extending hommel’s pro-
cedure: Efficient algorithms for closed testing based on simes’ test. Submitted for
publication.

Meinshausen, N. (2011). Discussion of multiple testing for exploratory research by J.
J. Goeman and A. Solari. Statistical Science, 26(4):601–603.

Sarkar, S. and Chang, C. (1997). The simes method for multiple hypothesis testing with
positively dependent test statistics. Journal of the American Statistical Association,
pages 1601–1608.

23

