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The R package pomdp provides an interface to ‘pomdp-solve’, a solver (written in C) for Partially Observable
Markov Decision Processes (POMDP). The package enables the user to simply define all components of a
POMDP model and solve the problem using several methods. The package also contains functions to analyze
and visualize the POMDP solutions (e.g., the optimal policy).

In this document we will give a very brief introduction to the concept of POMDP, describe the features of
the R package, and illustrate the usage with a toy example.

Introduction on POMDPs
A partially observable Markov decision process (POMDP) is a combination of an MDP to model system
dynamics with a hidden Markov model that connects unobservant system states to observations. The agent
can perform actions which affect the system (i.e., may cause the system state to change) with the goal to
maximize a reward that depends on the sequence of system state and the agent’s actions. However, the agent
cannot directly observe the system state, but at each discrete point in time, the agent makes observations
that depend on the state. The agent uses these observations to form a belief of in what state the system
currently is. This belief is called a belief state and is expressed as a probability distribution over the states.
The solution of the POMDP is a policy prescribing which action is optimal for each belief state.

The POMDP framework is general enough to model a variety of real-world sequential decision-making
problems. Applications include robot navigation problems, machine maintenance, and planning under
uncertainty in general. The general framework of Markov decision processes with incomplete information was
described by Karl Johan Åström in 1965 in the case of a discrete state space, and it was further studied in the
operations research community where the acronym POMDP was coined. It was later adapted for problems in
artificial intelligence and automated planning by Leslie P. Kaelbling and Michael L. Littman (Littman 2009).

A discrete-time POMDP can formally be described as a 7-tuple ( S , A , T , R , Ω , O , λ), where

• S = {s1, s2, . . . , sn} is a set of states,

• A = {a1, a2, . . . , am} is a set of actions,

• T is a set of conditional transition probabilities T (s′ | s, a) for the state transition s→ s′.

• R : S ×A→ R is the reward function,

• Ω = {o1, o2, . . . , ok} is a set of observations,

• O is a set of conditional observation probabilities O(o | s′, a), and

• λ ∈ [0, 1] is the discount factor.

At each time period, the environment is in some state s ∈ S. The agent chooses an action a ∈ A, which
causes the environment to transition to state s′ ∈ S with probability T (s′ | s, a). At the same time, the agent
receives an observation o ∈ Ω which depends on the new state of the environment with probability O(o | s′, a).
Finally, the agent receives a reward R(s, a). Then the process repeats. The goal is for the agent to choose
actions at each time step that maximizes its expected future discounted reward
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Package Functionality
Solving a POMDP problem with the pomdp package consists of two steps:

1. Define a POMDP problem using the function POMDP, and

2. solve the problem using solve_POMDP.

Defining a POMDP Problem
The POMDP function has the following arguments, each corresponds to one of the elements of a POMDP.
str(args(POMDP))

## function (discount = 0, states, actions, observations, start = "uniform",
## transition_prob, observation_prob, reward, values = "reward",
## name = NA)

Next we describe the arguments in detail and give examples:

• discount: Is the used discount factor λ, a real number in the range [0, 1].

r discount = 0.9

• states: Defines the set of states S using a vector of strings.

r states = c("state1" , "state2" , "state3")

• actions: Defines the set of actions A using a vector of strings.

r actions = c("action1" , "action2")

• observations: Defines the set of observations Ω using a vector of strings.

r observations = c("obs1" , "obs2")

• start: The initial probability distribution over the system states S. It can be specified in several ways.

– A vector of n probabilities in [0, 1], that add up to 1, where n is the number of states.

r start = c(0.5 , 0.3 , 0.2)

– The string ‘ “uniform” ’ for a uniform distribution over all states.

r start = "uniform"

– A vector of integer indices specifying a subset as start states. The initial probability is uniform
over these states. For example, only state 3 or state 1 and 3:

r start = 3 start = c(1, 3)

– A vector of strings specifying a subset as start states.

r start <- "state3" start <- c("state1" , "state3")

– A vector of strings starting with "-" specifying which states to exclude from the uniform initial
probability distribution.

r start = c("-" , "state2")

• transition_prob: Defines the conditional transition probabilities T (s′ | s, a). The probabilities
depend on the end-state s′, the start-state s and the action a. The set of conditional transition
probabilities can be specified in several ways:
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– A data frame with 4 columns, where the columns specify action, start-state, end-state and
the probability, respectively. The first 3 columns are either the names or the index of the action
or states.

r transition_prob = data.frame( "action" = c( "action1" , "action1"
, "action1", "action1" , "action1" , "action1", "action1"
, "action1" , "action1", "action2" , "action2" , "action2", "action2"
, "action2" , "action2", "action2" , "action2" , "action2"), "start-state"
= c( "state1" , "state1" , "state1", "state2" , "state2"
, "state2", "state3" , "state3" , "state3", "state1" ,
"state1" , "state1", "state2" , "state2" , "state2", "state3"
, "state3" , "state3"), "end-state" = c( "state1" , "state2"
, "state3", "state1" , "state2" , "state3", "state1" ,
"state2" , "state3", "state1" , "state2" , "state3", "state1"
, "state2" , "state3", "state1" , "state2" , "state3"), "probability"
= c( 0.1 0.4, 0.5, 0, 0.7, 0.3, 0.4, 0.4,
0.2, 0, 0.6, 0.4, 0.1, 0.9, 0, 0.7, 0.3, 0)
)

– A named list of m matrices where each matrix represents one of the m actions. Each matrix is
square of size n× n where n is the number of states. Matrices can also be defined as "identity"
or "uniform".

“‘r transition_prob = list( “action1” = matrix(c( 0.1, 0.4, 0.5, 0, 0.7, 0.3, 0.4, 0.4, 0.2), nrow = 3 , byrow
= TRUE) , “action2” = matrix(c( 0, 0.6, 0.4, 0.1, 0.9, 0, 0.7, 0.3, 0), nrow = 3 , byrow = TRUE))

transition_prob = list( “action1” = matrix(c( 0.1, 0.4, 0.5, 0, 0.7, 0.3, 0.4, 0.4, 0.2), nrow = 3 , byrow
= TRUE) , “action2” = “uniform”) “‘

• observation_prob: Specifies the conditional observation probabilities O(o | s′, a). The probabilities
depend on the action, the end-state, and the observation. The set of conditional observation
probabilities can be specified in several ways:

– A data frame with 4 columns, where the columns specify action, end-state, observation and
the probability, respectively. The first 3 columns could be either the name or the index of
the action, state, or observation. The special character ’“*“’ can be used to indicate that the
probability applies for all actions, states or observations.

r observation_prob = data.frame( "action" = c( "*", "*", "*",
"*", "*", "*"), "end-state" = c("state1", "state1", "state2",
"state2", "state3", "state3"), "observation" = c( "obs1", "obs2", "obs1",
"obs2", "obs1", "obs2"), "probability" = c( 0.1, 0.9, 0.3,
0.7, 0.4, 0.6))

– A named list of m matrices, one for each actions. Each matrix is of size n × o where n is the
number of states and o is the number of observations. (each matrix should have a name in the
list and the name should be one of the actions). Matrices can also be defined as "identity" or
"uniform".

“‘r observation_prob = list( “action1” = matrix(c(0.1, 0.9, 0.3, 0.7, 0.4, 0.6), nrow = 3, byrow = TRUE)
, “action2” = matrix(c(0.1, 0.9, 0.3, 0.7, 0.4, 0.6), nrow = 3, byrow = TRUE))

observation_prob = list( “action1” = “uniform”, “action2” = matrix(c(0.1, 0.9, 0.3, 0.7, 0.4, 0.6), nrow
= 3, byrow = TRUE)) “‘

• reward: This argument corresponds to the reward function R. The reward function in its most general
form depends on action, start-state, end-state and the observation. The reward function can
be specified several ways:
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– A data frame with 5 columns, where the columns specify action, start-state, end-state,
observation and the reward, respectively. The first 4 columns could be either the name or the
index of the action, state, or observation. The special character ’“*“’ can be used to indicate that
the same reward applies for all actions, states or observations.

r reward = data.frame( "action" = c("action1", "action1", "action1", "action2",
"action2", "action2"), "start-state" = c("*", "*", "*", "*", "*", "*"), "end-state"
= c("state1", "state2", "state3", "state1", "state2", "state3"), "observation" =
c("*", "*", "*", "*", "*", "*") , "reward" = c(10000, 2000, 50, 150, 2500, 100))

– A named list of m lists, where m is the number of actions (names should be the actions). Each
list contains n named matrices where each matrix is of size n × o, in which n is the number of
states and o is the number of observations. Names of these matrices should be the name of states.

r reward = list( "action1" = list( "state1" = matrix(c(1, 2, 3, 4,
5, 6) , nrow = 3 , byrow = TRUE), "state2" = matrix(c(3, 4, 5, 2, 3, 7) ,
nrow = 3 , byrow = TRUE), "state3" = matrix(c(6, 4, 8, 2, 9, 4) , nrow = 3 ,
byrow = TRUE)), "action2" = list( "state1" = matrix(c(3, 2, 4, 7, 4, 8)
, nrow = 3 , byrow = TRUE), "state2" = matrix(c(0, 9, 8, 2, 5, 4) , nrow = 3
, byrow = TRUE), "state3" = matrix(c(4, 3, 4, 4, 5, 6) , nrow = 3 , byrow =
TRUE)))

• values: This argument indicates whether the problem is minimization or a maximization. If the values
are costs then the problem is a minimization and if they are rewards then it is a maximization. The
default is reward.

r values = "cost" values = "reward"

• name: This argument can be used to name the POMDP problem defined by the user. This way the
user can keep track of the POMDP problems he defines.

r name = "Test Problem"

Solving a POMDP
POMDP problems are solved with the function solve_POMDP with the following arguments.
str(args(solve_POMDP))

## function (model, horizon = NULL, method = "grid", parameter = NULL,
## verbose = FALSE)

The model argument is a POMDP problem created using the POMDP function. The horizon argument specifies
the finite time horizon (i.e, the number of time steps) considered in solving the problem. If the horizon
is unspecified (i.e., NULL), then the algorithm continues running iterations till it converges to the infinite
horizon solution (Anthony Rocco Cassandra 1998). The method argument specifies what algorithm the solver
should use. Available methods including "grid", "enum", "twopass", "witness", and "incprune". Further
solver parameters can be specified as a list as parameters. The list of available parameters can be obtained
using the function solve_POMDP_parameter(). Finally, verbose is a logical that indicates whether the solver
output should be shown in the R console or not. The output of this function is an object of class POMDP.

Helper Functions
The package offers several functions to help with managing POMDP problems and solutions.

The functions model, solution, and solver_output extract different elements from a POMDP object
returned by solve_POMDP().

The package provides a plot function to visualize the solution’s policy graph using the package igraph. The
graph itself can be extracted from the solution using the function policy_graph().
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The Tiger Problem Example
We will demonstrate how to use the package with the Tiger Problem (Anthony R. Cassandra, Kaelbling, and
Littman 1994).

A tiger is put with equal probability behind one of two doors, while treasure is put behind the other one.
You are standing in front of the two closed doors and need to decide which one to open. If you open the door
with the tiger, you will get hurt by the tiger (negative reward), but if you open the door with the treasure,
you receive a positive reward. Instead of opening a door right away, you also have the option to wait and
listen for tiger noises. But listening is neither free nor entirely accurate. You might hear the tiger behind the
left door while it is actually behind the right door and vice versa.

The states of the system are the tiger behind the left door (tiger-left) and the tiger behind the right door
(tiger-right).

Available actions are: open the left door (open-left), open the right door (open-right) or to listen (listen).

Rewards associated with these actions depend on the resulting state: +10 for opening the correct door (the
door with treasure), -100 for opening the door with the tiger. A reward of -1 is the cost of listening.

As a result of listening, there are two observations: either you hear the tiger on the right (tiger-right), or you
hear it on the left (tiger-left).

The transition probability matrix for the action listening is identity, i.e., the position of the tiger does not
change. Opening either door means that the game restarts by placing the tiger uniformly behind one of the
doors.

Specifying the Tiger Problem
The problem can be specified using function POMDP() as follows.
library("pomdp")

TigerProblem <- POMDP(
name = "Tiger Problem",

discount = 0.75,

states = c("tiger-left" , "tiger-right"),
actions = c("listen", "open-left", "open-right"),
observations = c("tiger-left", "tiger-right"),

start = "uniform",

transition_prob = list(
"listen" = "identity",
"open-left" = "uniform",
"open-right" = "uniform"),

observation_prob = list(
"listen" = matrix(c(0.85, 0.15, 0.15, 0.85), nrow = 2, byrow = TRUE),
"open-left" = "uniform",
"open-right" = "uniform"),

reward = data.frame(
"action" = c("listen", "open-left", "open-left", "open-right", "open-right"),
"start-state" = c("*", "tiger-left", "tiger-right", "tiger-left", "tiger-right"),
"end-state" = c("*", "*", "*", "*", "*"),
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"observation" = c("*", "*", "*", "*", "*"),
"reward" = c(-1, -100, 10, 10, -100))

)

TigerProblem

## POMDP model: Tiger Problem
##
## $name
## [1] "Tiger Problem"
##
## $discount
## [1] 0.75
##
## $states
## [1] "tiger-left" "tiger-right"
##
## $actions
## [1] "listen" "open-left" "open-right"
##
## $observations
## [1] "tiger-left" "tiger-right"
##
## $start
## [1] "uniform"
##
## $transition_prob
## $transition_prob$listen
## [1] "identity"
##
## $transition_prob$`open-left`
## [1] "uniform"
##
## $transition_prob$`open-right`
## [1] "uniform"
##
##
## $observation_prob
## $observation_prob$listen
## [,1] [,2]
## [1,] 0.85 0.15
## [2,] 0.15 0.85
##
## $observation_prob$`open-left`
## [1] "uniform"
##
## $observation_prob$`open-right`
## [1] "uniform"
##
##
## $reward
## action start.state end.state observation reward
## 1 listen * * * -1
## 2 open-left tiger-left * * -100
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## 3 open-left tiger-right * * 10
## 4 open-right tiger-left * * 10
## 5 open-right tiger-right * * -100
##
## $values
## [1] "reward"

Solving the Tiger Problem
Now, we can solve the problem using the default algorithm (finite grid, a form of point-based value iteration).
tiger_solved <- solve_POMDP(TigerProblem)
tiger_solved

## Solved POMDP model: Tiger Problem
## method: grid
## belief states: 5
## total expected reward: 1.933439

The output is an object of class POMDP which contains the solution.
solution(tiger_solved)

## POMDP solution
##
## $method
## [1] "grid"
##
## $parameter
## NULL
##
## $alpha
## coeffecient 1 coeffecient 2
## 1 -98.549921 11.450079
## 2 -10.854299 6.516937
## 3 1.933439 1.933439
## 4 6.516937 -10.854299
## 5 11.450079 -98.549921
##
## $pg
## belief_state action tiger-left tiger-right
## 1 1 open-left 3 3
## 2 2 listen 3 1
## 3 3 listen 4 2
## 4 4 listen 5 3
## 5 5 open-right 3 3
##
## $belief
## tiger-left tiger-right belief_state
## 1 5.000000e-01 5.000000e-01 3
## 2 8.500000e-01 1.500000e-01 4
## 3 1.500000e-01 8.500000e-01 2
## 4 9.697987e-01 3.020134e-02 5
## 5 3.020134e-02 9.697987e-01 1
## 6 9.945344e-01 5.465587e-03 5
## 7 5.465587e-03 9.945344e-01 1
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## 8 9.990311e-01 9.688763e-04 5
## 9 9.688763e-04 9.990311e-01 1
## 10 9.998289e-01 1.711147e-04 5
## 11 1.711147e-04 9.998289e-01 1
## 12 9.999698e-01 3.020097e-05 5
## 13 3.020097e-05 9.999698e-01 1
## 14 9.999947e-01 5.329715e-06 5
## 15 5.329715e-06 9.999947e-01 1
## 16 9.999991e-01 9.405421e-07 5
## 17 9.405421e-07 9.999991e-01 1
## 18 9.999998e-01 1.659782e-07 5
## 19 1.659782e-07 9.999998e-01 1
## 20 1.000000e+00 2.929027e-08 5
## 21 2.929027e-08 1.000000e+00 1
## 22 1.000000e+00 5.168871e-09 5
## 23 5.168871e-09 1.000000e+00 1
## 24 1.000000e+00 9.121536e-10 5
## 25 9.121536e-10 1.000000e+00 1
##
## $belief_proportions
## tiger-left tiger-right
## 1 0.003349418 0.996650582
## 2 0.150000000 0.850000000
## 3 0.500000000 0.500000000
## 4 0.850000000 0.150000000
## 5 0.996650582 0.003349418
##
## $total_expected_reward
## [1] 1.933439
##
## $initial_belief_state
## [1] 3

The solution contains the following elements:

• belief: A data frame of all the belief states (rows) used while solving the problem. There is a column
at the end that indicates which hyperplane (specified in alpha below) provides the best value for the
given belief state.

• belief_proportions: A data frame with the probability distribution for each belief state.

• alpha: A data frame with the coefficients of the optimal hyperplanes.

• pg: A data frame containing the optimal policy graph. Rows are belief states. Column two indicates
the optimal action for the belief stare. Columns three and after represent the transitions from belief
state to belief state depending on observations.

• total_expected_reward: The total expected reward of the optimal solution.

• initial_node: The index of the initial belief state in the policy graph.

Visualization

In this section, we will visualize the policy graph provided in the solution by the solve_POMDP function.
plot(tiger_solved)
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The policy graph can be easily interpreted. Without prior information, the agent starts at the belief state
marked with “initial.” In this case the agent beliefs that there is a 50-50 chance that the tiger is behind ether
door. The optimal action is displayed inside the state and in this case is to listen. The observations are
labels on the arcs. Let us assume that the observation is “tiger-left”, then the agent follows the appropriate
arc and ends in a belief state that has a very high probability of the tiger being left. However, the optimal
action is still to listen. If the agent again hears the tiger on the left then it ends up in a belief state that has
open-right as the optimal action. There are arcs back to the initial state which reset the problem.

Since we only have two states, we can visualize the piecewise linear convex value function as a simple plot.
alpha <- solution(tiger_solved)$alpha
alpha

## coeffecient 1 coeffecient 2
## 1 -98.549921 11.450079
## 2 -10.854299 6.516937
## 3 1.933439 1.933439
## 4 6.516937 -10.854299
## 5 11.450079 -98.549921
plot(NA, xlim = c(0, 1), ylim = c(0, 10), xlab = "Belief space", ylab = "Value function")
for(i in 1:nrow(alpha)) abline(a = alpha[i,1], b= alpha[i,2], col = i)
legend("topright", legend = 1:nrow(alpha), col = 1:nrow(alpha), lwd=1)

9



0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Belief space

V
al

ue
 fu

nc
tio

n

1
2
3
4
5

References
Cassandra, Anthony R., Leslie Pack Kaelbling, and Michael L. Littman. 1994. “Acting Optimally in Partially
Observable Stochastic Domains.” In Proceedings of the Twelfth National Conference on Artificial Intelligence.
Seattle, WA.

Cassandra, Anthony Rocco. 1998. “Exact and Approximate Algorithms for Partially Observable Markov
Decision Processes.” PhD thesis, Providence, RI, USA: Brown University.

Littman, Michael L. 2009. “A Tutorial on Partially Observable Markov Decision Processes.” Journal of
Mathematical Psychology 53 (3): 119–25. doi:10.1016/j.jmp.2009.01.005.

10

https://doi.org/10.1016/j.jmp.2009.01.005

	Introduction on POMDPs
	Package Functionality
	Defining a POMDP Problem
	Solving a POMDP
	Helper Functions

	The Tiger Problem Example
	Specifying the Tiger Problem
	Solving the Tiger Problem
	Visualization

	References


