Construction and randomization of regular factorial designs
with the R package planor

Hervé Monod and Annie Bouvier

MalAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
November 16, 2016

Contents
1 Introduction 2
2 Two simple examples to illustrate the basic approach 3
2.1 Construction of a randomized complete block design 3
2.1.1 Step by step constructiono 3
2.1.2 Onme-step construction 4
2.1.3 Analysis 5
2.2 Construction of a randomized Latin square design with two treatment factors . . .)
2.2.1 One-step construction)
2.2.2 Analysis 6
3 The main components of planor 6
3.1 Factors. e 6
3.2 Expected models and terms to estimate 7
3.3 Experimental units 8
3.4 Key matrices Lo 8
3.5 Design solutions 8

4 Construction of factorial designs: more examples 8
4.1 Full and fractional factorial designs L. 8
4.1.1 Full factorial design 8

4.1.2 Fractional factorial design of resolution 5 9

5 Construction of regular factorial designs through the search for a design key 10

5.1 A very short technical point Lo 10
5.2 Fractional designs with 2-level factors 11
5.2.1 Search foradesignkey. o 11
5.2.2 Design-key properties Lo Lo 12
5.2.3 Design generation Lo 13
5.3 Fractional designs with 3-level factors 14
5.4 Asymmetric fractional factorial designs oo 14
5.5 Split-plot designs L 17
5.6 Fractional designs with nested factors and a complex block structure 20

1 Introduction

The design of factorial experiments is an essential part of applied statistics. It is presented in
many textbooks but for the planor user, we particularly recommend the book [2] by R.A. Bailey
and the chapter [7] by A. Kobilinsky (in French). In practice, the experimenter aims to study the
joint influence of several factors of interest, called the treatment factors, on one or more response
variables. Before the experiment, the experimenter and — ideally — the statistician define the
treatment factors and their levels. Based on the available resources and on the experimental
protocol, they determine the size of the experiment and they may identify additional factors
called nuisance or block factors, to be taken into account even though they are not interesting per
se. Last but not least, they must anticipate how the results will be analysed or, more precisely,
which model will be applied to the data. Based on all these specifications, they can search for a
valuable class of designs, and then generate and randomize one such design for the experiment.

The R package planor is made to generate factorial designs by following this approach. To
generate a design with planor, the user must provide information on the design factors, on the
design size, and on the anova model to be used when analysing the results. The user then asks
planor to search for one or more solutions to these specifications. The solutions returned by planor,
if any, are orthogonal designs which ensure that all the factorial effects of interest will be estimable
when the specified anova model will be applied to the experimental data. The designs can be
randomized according to the relevant blocking structure, so that the estimators will be unbiased
even if the model is only approximately true. Besides, orthogonality properties guarantee that the
variance of the estimators will be minimal compared to other designs of the same size.

Strictly speaking, planor generates reqular factorial designs, which are obtained by an algebraic
method of construction and which form a sub-class of orthogonal designs. The algorithm imple-
mented in planor thus diverges from an optimal design approach and it excludes a lot of interesting
non-orthogonal designs. However, it includes many of the most useful classes of designs, such as
complete block designs, Latin squares, split-plot designs, and many other full and fractional fac-
torial designs. It can find designs for a small or a large number of factors, with possibly different
numbers of levels. It can take into account hierarchical relationships among factors and control the
confounding of treatments effects with block effects, like in split-plot or criss-cross experiments.

The main algorithm implemented in planor is presented in [12], together with the theory behind
and with several detailed examples. This algorithm is based on the key matrix method introduced
by [15] and refined by [1],[6]. It produces the so-called regular designs in which factorial effects
are either estimable independently or completely confounded. The method is further described in
[7], [10], [11] and illustrated in [4]. The initial planor manual [8] has been adapted to the planorR
package [9] and it also gives more information on the theory than this guide.

This vignette first presents how planor can be used to generate easily ready-to-use factorial
designs with different blocking structures. Section 2 also shows how the designs can be randomized.
Then Section 5 gives more technical information on the objects generated by the planor functions.
Indeed, the solutions, if any, can be obtained as a list of design key matrices. Several specific
functions then allow to investigate the solutions’ properties and to print and store the resulting
designs.

Please note that planor is still under construction. More details are available through the help
functions. We advise to check that the designs obtained by planor behave as expected before using
them for a real experiment, by inspecting them and conducting analysis on simulated data, for
example.

To start working with planor, we first load the package as usual.

library("planor")

Loaded planor 1.3.0

2 Two simple examples to illustrate the basic approach

2.1 Construction of a randomized complete block design

To illustrate the construction of a factorial design with planor, we first consider the classical case
of a variety trial in agriculture. We assume that the experimenter wants to compare five varieties
denoted by V1 to V5. No more than 20 plots are available and, because of the field heterogeneity,
they are divided into four blocks of size five. The best solution, in that case, is to construct a
randomized complete block design.

2.1.1 Step by step construction

The design construction may be decomposed into four generic main steps.

First step: specify the factors and their levels, using the function planor.factors. A
first possibility is to give the names of the s = 2 factors to the factors argument, and their s
numbers of levels to the nlevels argument:

trial.fac <- planor.factors(factors = c("Block", "Variety"),
nlevels = c(4, 5))

In that case, the levels of the factors are the integers from 1 to their numbers of levels. Alterna-
tively, alphanumeric levels can be specified by giving a list of vectors to the factors argument.
Each element of the list must bear the name of a factor and contain the levels of that factor:

trial.fac <- planor.factors(factors = list(Block = 1:4,
Variety = C(llvlll, ”VQ”, IIV3II, IIV4II, "V5")))

Second step: specify the expected properties of the design, using the function planor.model.
The simplest way to use the function planor.model is to give an anova formula to its model ar-
gument, involving the factors declared in the first step. planor will then search for designs which
ensure that all the factorial effects in this formula can be fully estimated when it is applied to the
response data with, typically, the R function aov.

For a complete block design, the usual model for the analysis contains the main effects of
the block and treatment factors, whereas their interaction is neglected and confounded with the
residual. So the model to be specified to planor.model is:

trial.mod <- planor.model(model = “Block + Variety)

Third step: specify the design size and run the search for a solution, using the
function regular.design. This function requires the information on the factors now stored in
trial.fac, the information on the expected model now stored in trial.mod and the information
on the design size given by the compulsory nunits argument. In the present step-by-step approach,
regular.design is called as follows:

trial.plan <- regular.design(factors = trial.fac, model = trial.mod,
nunits = 20, output = "data.frame")

The search is closed: max.sol = 1 solution(s) found
print(t(trial.plan), quote = FALSE)

Hit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Block 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
Variety V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5

The output argument is optional. By setting output="data.frame", we ask regular.design
to return the plan as a simple dataframe. We print just below the design in a more concise matrix
form where each row corresponds to a block.

print (t(matrix(trial.plan$Variety, 5, 4)), quote = FALSE)

##t [,11 [,2]1 [,3] [,4] [,5]
[1,] v1 V2 V3 V4 V5
[2,] V1 V2 V3 V4 V5
[3,] V1 V2 V3 V4 V5
[4,] V1 V2 V3 V4 V5

Fourth step: randomize the design, using the function planor.randomize. In planor, the
randomization is defined as a random permutation of the units with respect to an initial design and
a specified block structure. The arguments of planor.randomize are blockformula to specify
the block structure and data to give the initial design.

The randomization of a block design consists of a random permutation of the blocks and
independent random permutations of the units within each block. For the variety trial, the syntax

1S:

trial.rand <- planor.randomize(blockformula = “Block/UNITS,
data = trial.plan)
print (t(matrix(trial.rand$Variety, 5, 4)), quote = FALSE)

#t (,11 [,2]1 [,3]1 [,4] [,5]
[1,] V6 Vi V4 V3 V2
[2,] V6 V2 V3 V4 Vi
[3,] Vi V3 V4 V2 V5
[4,1 V2 Vv4 V5 V3 V1

This is the final step of the design generation. Each row i of trial.rand gives the combination
of levels of the factors which must be used in run (or plot) 7 of the experiment.

2.1.2 One-step construction

The step-by-step construction just described can be shortcut by giving all the required informa-
tion directly to the function regular.design. To get the same design as above (except for the
randomization step), the equivalent one-step syntax is:

trial.rand2 <- regular.design(factors = list(Block = 1:4,
Variety = c("vi", "v2", "y3", "v4", "V5")), model = “Block +
Variety, nunits = 20, randomize = “Block/UNITS, output = "data.frame")

The search is closed: max.sol = 1 solution(s) found
print (t(matrix(trial.rand2$Variety, 5, 4)), quote = FALSE)

##t [,11 [,2]1 [,3] [,4] [,5]
[1,1] v4 V3 V2 V5 Vi
[2,] V2 V1 Vs V4 V3
[3,] V1 V2 V3 V5 V4
[4,] V1 v4 V3 V2 V5

2.1.3 Analysis

After the experiment is completed, the response variables can be added as new columns of the
dataframe trial.rand. The data can be analysed by anova, using the specified model formula
and the aov function. Based on simulated data, the analysis of the complete block trial gives:

trial.rand$Y <- runif (20)
trial.aov <- aov(Y ~ Block + Variety, data = trial.rand)
summary (trial.aov)

#i Df Sum Sq Mean Sq F value Pr(>F)
Block 3 0.1937 0.06457 0.963 0.442
Variety 4 0.6390 0.15975 2.382 0.110

Residuals 12 0.8047 0.06706

2.2 Construction of a randomized Latin square design with two treat-
ment factors

The complete randomized block design is a full factorial design, which means that all combinations
of levels of the factors are replicated the same number of times. To show a less trivial example of
what planor can do, we complete this introductory section by a design construction which involves
more factors and cannot allow for a full factorial design. On the contrary, it requires to search for
a fractional design, that is, a design which is too small to include all the combinations of levels of
the factors.

Consider a sensory experiment to compare the six cake preparations which result from three
recipes cooked at two different temperatures. The experimenter is interested in the main effects of
both factors and in their interaction. We assume that the experiment consists of six tasters and six
tasting periods. All tasters can assess all preparations consecutively as in a complete block design
but, in addition, the experimenter wants to account for a possible period effect when analysing
the data.

2.2.1 One-step construction

This problem can be solved by using a Latin square design. A Latin square is a table of n rows
and n columns. It contains n symbols, with each symbol represented exactly once per row and
once per column. With a Latin square, it is possible to study a treatment factor of interest while
allowing for two block factors that are completely crossed. From a statistical point of view, it is
a fractional factorial design for three factors at n levels in n? units, with all three factors being
pairwise orthogonal. Here, the block factors are the tasters and the periods, and the n treatments
are the combinations of the recipe and temperature factors.

In planor, this design can be generated and randomized automatically by the step-by-step or
one-step constructions presented in Subsection 2.1. The one-step R code is:

TasterLevels <- paste("Tastor_", 1:6, sep = "")

PeriodLevels <- paste("Period", 1:6, sep = "")

LS.rand <- regular.design(factors = list(tastor = TasterLevels,
period = PeriodLevels, recipe = LETTERS[1:3], temp = 1:2),
model = “tastor + period + recipe * temp, nunits = 36,
randomize = “tastor + period, output = "data.frame")

The search is closed: max.sol = 1 solution(s) found
The search is closed: max.sol 1 solution(s) found

When declaring the factors, we show different possibilities based on basic R to specify their sets
of levels. Note that the randomization of a Latin square consists in randomly permuting both the
row and the coluns formula takes into account both the tastor and period block factors.

We print the first five rows of the design dataframe and then the design in its Latin square
form :

print(LS.rand[1:5,])

tastor period recipe temp
1 Tastor_1 Periodl A 2
2 Tastor_1 Period2 B 1
3 Tastor_1 Period3 © 2
10 Tastor_1 Period4 A 1
11 Tastor_1 Periodb B 2

LS.rand$preparation <- paste(LS.rand$recipe, LS.rand$temp,
sep = ".")

LS.table <- matrix(LS.rand$preparation, 6, 6)

rownames (LS.table) <- PeriodLevels

colnames(LS.table) <- TasterLevels

print (LS.table, quote = FALSE)

Tastor_1 Tastor_2 Tastor_3 Tastor_4 Tastor_5 Tastor_6
Periodl A.2 C.2 C.1 B.1 B.2 A1
Period2 B.1 A.1l A.2 G-2 ©.il B.2
Period3 C.2 B.2 B.1 A.1l A.2 ©.il
Period4 A.1 C.1 C.2 B.2 B.1 A.2
Periodb B.2 A.2 Al C.1 C.2 B.1
Period6 C.1 B.1 B.2 A.2 A1 C.2

2.2.2 Analysis

The analysis on simulated data gives:

LS.rand$Y <- runif(36)
LS.aov <- aov(Y ~ tastor + period + recipe * temp, data = LS.rand)
summary (LS. aov)

it Df Sum Sq Mean Sq F value Pr(>F)
tastor 5 0.2146 0.04292 0.415 0.832
period 5 0.2474 0.04948 0.479 0.788
recipe 2 0.4049 0.20245 1.959 0.167
temp 1 0.0451 0.04511 0.436 0.516
recipe:temp 2 0.0957 0.04784 0.463 0.636
Residuals 20 2.0671 0.10335

3 The main components of planor

3.1 Factors

In the usual R meaning, a factor is a column of a dataframe with a discrete set of levels. At the
construction stage, the design dataframe has yet to constructed, so planor has the factor contains
mainly the information on the set of levels.

There is a planor an S4 class to define a list of factors and to prepare it for design search.

3.2 Expected models and terms to estimate
Presently (17 January 2016, planor 0.2.4), the following rules are implemented in planor:

e all the factors declared in a model formula are treated as independent factors (as opposed
to nested or correlated factors) when the formula is first processed. Besides, the model is
supposed to be complete with respect to marginality (that is, it contains the general mean
and, if it contains for example the interaction B*C, it must also contain the marginal terms
B and C). It follows that no nesting relationship is allowed in the model formulae. Thus,
B+C, B*C, A:B and (A+B+C) "2 can be used (provided the whole model is complete), whereas
B %in’% A, A/B or the whole formula ~A+B+B:C generate an error with a message about the
problem.

test <- regular.design(factors = LETTERS[1:3], nlevels = c(2,
3, 2), model = “A + B/C, estimate = “A, nunits = 12)

Error in planor.modelterms(model): The factorial term B:C is present in the
model formula 1 but not all of its marginal terms. This is not allowed for model
formulae.

e on the contrary, an estimate formula may be incomplete with respect to marginality. For
example, it may contain the interaction BxC but not the marginal term C, which is interpreted
as having interest in the interaction contrasts between B and C' but not in the main effect of
C. When this happens and because it is quite an unusual requirement, a warning is given.

test <- regular.design(factors = LETTERS[1:3], nlevels = c(2,
3, 2), model = “A * B * C, estimate = A + B/C, nunits = 12)

Warning in planor.modelterms(model): The factorial term B:C is present in
the estimate formula 1 but not all of its marginal terms. Consequently, this

or these marginal terms will be considered of no interest and may be unestimable
in the final design.

The search is closed: max.sol = 1 solution(s) found

e if a model formula (respectively an estimate formula) is empty, then the associated estimate
formula (respectively the associated model formula) are considered to provide the ineligible
factorial terms (those that must not be confounded with the general mean). If both a model
formula and its associated estimate formula are empty, the program stops with an error
message.

test <- regular.design(factors = LETTERS[1:3], nlevels = c(2,
3, 2), model = “1, estimate = 0, nunits = 12, base = A +
B + C)

Error in planor.ineligibleterms(modelterm.matrices): There is no factor at
all in the pair 1 of model and estimate formulae. This is not allowed in PLANOR.

e in principle, the factorial terms in an estimate formula must be a subset of the factorial
terms in the associated model formula. However, for some special uses not detailed here, it
is not considered an error when this is not the case.

3.3 Experimental units

In planor, the main information to give about the experimental units is their number. Indeed, the
nunits argument of planor.designkey or regular.design is compulsory in the present versions
of the package.

The most recent versions give an explicit error message if nunits is missing or null, together
with information on the number of units that would be required for a full factorial design. It is
planned to give more help to the user on this point in the future versions of planor.

3.4 Key matrices

3.5 Design solutions
4 Construction of factorial designs: more examples

4.1 Full and fractional factorial designs

In a full factorial design, all possible combinations of the factors’ levels are equireplicated. When
there are many factors or many levels per factor, the full factorial design is usually not feasible
because its size is larger than the maximum possible number of units. In that case, one can use a
fractional design.

A fractional factorial design of odd resolution R guarantees that all effects of order strictly
smaller than R/2 can be estimated, provided all factorial effects of order larger than 2 are assumed
to be ngligible.

For simplicity, we consider in this subsection that there are no block factors, so that the designs
must be completely randomized.

4.1.1 Full factorial design

We now consider a design for three factors A, B, C at 2, 2, 3 levels respectively. Suppose we
want to estimate all the factorial effects. Then the model formula must include the main effects
and all interactions of A, B, C. All possible combinations of A, B, C', must be present, so that the
minimum size of the design is 12. Note that the other possible sizes are restricted to multiples of
12 in planor, because of orthogonality constraints.

Provided the experimenter wants a completely randomized design, the block structure is limited
to the UNITS level. Then the R code is:

ABC.rand <- regular.design(factors = LETTERS[1:3], nlevels = c(2,
2, 3), model = “A * B * C, nunits = 12, randomize = ~UNITS,
output = "data.frame")

The search is closed: max.sol = 1 solution(s) found
print (ABC.rand)

Hit
Hit
Hit
#it
#it
#it
Hit
Hit
#it
#it

©O© 00 NO Ok WN -

P NP, P NFE PR, NDN P
NP, P, P, NNDNNDND-WT
NNNWRFE,RFP, WNRFEQ

10 2 2 3
11 1 1 1
12 2 1 3

Based again on simulated data, the analysis gives:

ABC.rand$Y <- runif(12)
ABC.aov <- aov(Y ~ A * B * C, data = ABC.rand)
summary (ABC.aov)

#it Df Sum Sq Mean Sq
A 1 0.11604 0.11604
B 1 0.08376 0.08376
C 2 0.00193 0.00096
A:B 1 0.05517 0.05517
A:C 2 0.16719 0.08359
B:C 2 0.00571 0.00285
A:B:C 2 0.11305 0.05652

4.1.2 Fractional factorial design of resolution 5

The package planor was originally conceived to search for highly fractionated factorial designs. For
a given set of factors, fractional designs require much fewer units than the full factorial design but
still allow to analyse the data with a given incomplete anova model, under the assumption that
the factorial effects not in the model are negligible. They have been used for real experiments for
a long time [3] and, more recently, for computer experiments (e.g. [5], [14]).

For example, a fraction of resolution 5 guarantees that all terms can be estimated from a
model with all main effects and two-factor interactions. A fractional design of resolution 5 is
generated below for 10 factors at 4 levels, assuming that 2'© = 1024 units are available instead of
410 =1 048 576 for a full factorial design:

FFD <- regular.design(factors = LETTERS[1:10], nlevels = 4,
model = "(A+B+C+D+E+F+G+H+1I+7J)"2,
nunits = 2710, output = "data.frame")

The search is closed: max.sol = 1 solution(s) found

print (dim(FFD))

[1] 1024 10

print (FFD[1:5, 1)

A BCDEFGHTIJ
11111111111
21111122222
31111133333
#* 4 1111144444
51112211224

Note that in planor syntax, it is equivalent, but shorter, to specify resolution = 5 rather
than

model = ~(A+B+C+D+E+F+G+H+I+J) 2.

5 Construction of regular factorial designs through the search
for a design key

We now adopt a more progressive way to construct the design. For this reason, we focus on
the planor.designkey function rather than regular.design. In that case, design construction
involves two main steps :

1. the search for key matrices (function planor.designkey);
2. then the design generation and randomization (function planor.design).

We start by a short technical subsection. It cannot go into details, but we hope it helps to make
a link with other approaches to the construction of regular factorial designs.

5.1 A very short technical point

A key matrix of base p in planor is a matrix of integers modulo p, where p is a prime. It encodes
the information required to construct a regular factorial design for factors at p levels.

Consider for example a design for 4 factors A, B, C, D at p = 2 levels in 23 = 8 units, whereas
a full factorial design would require 2 = 16 units. It is possible to construct a design which allows
to estimate the main effects of the factors assuming the three- and four-factor interactions are
negligible. The solution is explained in many books on factorial designs (e.g. [3]) :

e assimilate the factors’ levels to 0,1 mod 2;
e make a full factorial design on A, B, C,

e add the level of D on each unit by the equation D = A + B + C' mod 2, called the defining
relationship of the design.

Then it can be shown that the interaction A.B.C.D is confounded with the general mean, the
main effect A is confounded with the interaction B.C.D, etc.
In planor, this construction is encoded in the following key matrix of base 2 :

K =

o O =

0 0 1
1 0 1
0 1 1

The rows of K are associated with three factors Uy, Uy, Us which are called the units factors. The
idea is that the set of units can be identified to the full factorial design on these units factors.
The columns of K are associated with the treatment factors A, B, C, D. Here the first column
of K means that in the design, we must have A = U; (modulo 2). The second, third and fourth
columns mean B = Uy, C' = Us and D = U; + Us + Us, respectively. It follows that the defining
relationship D = A + B + C' mod 2 will be satisfied.

The core algorithm in planor basically constructs K by searching for its columns successively,
using a backtrack algorithm. However, there is also much pre-processing to turn the factors and
model specifications into appropriate constraints on the columns of K. In particular, all factors
are automatically decomposed into pseudofactors which all have a prime number of levels, and the
whole problem is decomposed according to the different prime numbers involved.

A detailed presentation of the methodology implemented in planor is under preparation. See
also the references given in the introduction or [16] for the extension of regular factorial designs
to the case when different primes are involved.

10

5.2 Fractional designs with 2-level factors
5.2.1 Search for a design key

Consider an experiment to study four treatment factors A, B, C, D at two levels, using two blocks
of size four. A full factorial design on the treatment factors would require 16 units. Only eight
are available so that a fractional design must be used. In addition, some treatment effects are
necessarily confounded with the block effect.

At first, we may look for a design adapted to the model that includes the main effects of the
block and treatment factors, as well as the interactions between pairs of treatment factors :

ex1Key <- planor.designkey(factors=c("block","A","B","C","D"),nlevels=rep(2,5),
model="block+(A+B+C+D) "2,
nunits=2"3)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search

=> search for columns 2 to 5

first visit to column 2

#it first visit to column 3

#it == col. 3 (j = 2) 4 selected candidates
#i# first visit to column 4

#Hit == col. 4 (j = 3) 1 selected candidates
#i# first visit to column 5

#it == col. 5 (j = 4) 0 selected candidates
#it == col. 4 (j =3) 1 selected candidates
#Hit == col. 5 (j = 4) 0 selected candidates
#Hit == col. 3 (j = 2) 4 selected candidates

The search is closed: 0 solutions found

It turns out that planor fails to find a solution. There is indeed no solution to the problem.

For the second try, we keep the same model but relax the implicit constraint to estimate all fac-
torial terms in the model. This is done by using the estimate argument of the planor.designkey
function. This argument is optional : by default, it is considered that all terms in the model for-
mula must be estimated. In contrast, we only require below that the main effects of the treatment
factors be estimable. It follows that we now allow for designs in which two-factor interactions are
mutually confounded.

ex1Key <- planor.designkey(factors=c("block","A","B","C","D"),nlevels=rep(2,5),
model="block+(A+B+C+D) "2,
estimate="A+B+C+D,
nunits=2"3)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search

=> search for columns 2 to 5

first visit to column 2

first visit to column 3

#Hit == col. 3 (j = 2) 5 selected candidates
first visit to column 4

#Hit == col. 4 (j = 3) 4 selected candidates
first visit to column 5

#Hit == col. 5 (j = 4) 1 selected candidates

The search is closed: max.sol = 1 solution(s) found

11

During the search, the backtrack algorithm looks successively for new columns to add to
the key matrix. Succinct information is given to check the algorithm progress (default argument
verbose=TRUE). The search stops as soon as all columns of the key matrix have been found (default
argument max.sol=1).

An alternative to using planor.designkey directly is to provide the information on the exper-
iment step by step with the functions planor.factors and planor.model. The idea is to store
the results of these functions in R objects and use them as arguments to planor.designkey. This
may be convenient, for example, when one wants to explore several possible models and design
sizes with the same set of factors.

exlFac <- planor.factors(factors=c("block","A","B","C","D"), nlevels=rep(2,5),
block="block)

ex1Mod <- planor.model(model="block+(A+B+C+D) "2, estimate="A+B+C+D)

ex1Key <- planor.designkey(factors=exl1Fac, model=ex1Mod, nunits=2"3)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search

=> search for columns 2 to 5

first visit to column 2

first visit to column 3

#it == col. 3 (j = 2) 5 selected candidates
#it first visit to column 4

#it == col. 4 (j = 3) 4 selected candidates
first visit to column 5

#i# == col. 5 (j =4) 1 selected candidates

The search is closed: max.sol = 1 solution(s) found

5.2.2 Design-key properties

In both cases, the key matrix solution is stored in the object ex1Key. Its detailed properties can be
obtained by two different functions. The summary function prints the key matrix and the defining
relationships associated with this key matrix. More detailed information on the aliasing between
factorial effects is given by the function alias.

Note that we have used the optional block argument of planor.factors (also available in
planor.designkey). It specifies the factors that should be considered as block (or nuisance)
factors. In planor, the distinction between treatment and block factors is taken into account when
studying confounding and aliasing properties.

summary (ex1Key, show="dtb")

##

kokokkkkkokk Prime 2 design kkkkskokokokokk
#i#

-—- Solution 1 for prime 2 ---
##

DESIGN KEY MATRIX

#i# block A B CD

*Ux 10101

*xUx 01100

*xUx 00011

##

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

12

1 =ABCD

##

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1 = block A B

1 = block C D

alias(ex1Key)

##

okokkkkkkk Prime 2 design kkkkokkkkkk
#i#

--- Solution 1 for prime 2 ---

##

UNALIASED TREATMENT EFFECTS
A ; B ; C ; D

##

ALTIASED TREATMENT EFFECTS
A:C = B:D

A:D = B:C

##

TREATMENT AND BLOCK EFFECTS CONFOUNDED WITH BLOCK EFFECTS
block = A:B = C:D

##

UNALIASED BLOCK EFFECTS

nil

##

##

——- Synthesis on the aliased treatment effects for prime 2 ---
##

unaliased trt.aliased blc.aliased

[1,] 4 4 2

5.2.3 Design generation

Last but not least, a design can be generated by the function planor.design. The design itself
is the object in slot design of the more complex object generated by planor.design. An option
allows the design to be randomized, according to a block structure formula that the user must
specify (option randomize).

ex1Des <- planor.design(ex1Key)
print (getDesign(ex1Des))

Dblock A B CD
1 11111
2 11122
3 12211
4 12222
5 21212
6 21221
7 22112
8 22121

ex1Rand <- planor.design(exl1Key, randomize="block/UNITS)
print (getDesign(ex1Rand))

13

Dblock A B CD
1 11122
2 12222
3 11111
4 12211
5 22121
6 21212
7 22112
8 21221

5.3 Fractional designs with 3-level factors

We keep the same example but with 3-level factors and a few more options. The results are not
shown for sake of brevity.

B OKKKKKKKKKFFFFFFFK EXAMPLE 2 ok h ke k ke ke ke ke e e e e e e K
Four 3-level treatment factors and one 3-level block factor

Model: block+(A+B+C+D) 2 - Estimate: A+B+C+D
N = 373 = 27 units
#

ex2Key <- planor.designkey(factors=c(LETTERS[1:4],"block"),
nlevels=rep(3,5),
block="block,
model="block+(A+B+C+D) "2,
estimate="A+B+C+D,
nunits=3"3, base="A+B+C, max.sol=2)

summary (ex2Key)

summary (ex2Key)

ex2Des <- planor.design(ex2Key[2])

Two optional arguments of planor.designkey have been used, first to specify that A, B and
C should be used as basic factors, and second to ask for two solutions whereas the default is one.
Both solutions are examined by summary and the second one, say, is chosen by the user to generate
a factorial design. When basic factors are specified, they are identified to the units factors U; [8].
As a consequence, all combinations of the basic factors are guaranteed to be included in the design.
When relevant, using basic factors is recommended because it can speed up the search.

The following lines also work; they illustrate that the basic factors need not be part of the
model but they must have been declared in planor.factors

ex2Fac <- planor.factors(factors=c(LETTERS[1:4], "block", "BASE"),
nlevels=rep(3,6))
ex2Mod <- planor.model (model="block+(A+B+C+D)"2,
estimate="A+B+C+D)
ex2Key <- planor.designkey(factors=ex2Fac,
model=ex2Mod,
nunits=3"3,
base="A+B+BASE,
max.sol=2)

5.4 Asymmetric fractional factorial designs

A regular fractional factorial design is called mixed or asymmetric when the numbers of levels of
the factors involve several different prime numbers. The asymmetric designs constructed in planor

14

consist of the cross products of designs based on each prime. This does not allow for a great
flexibility in terms of confounding, but it enlarges the scope of situations that can be addressed.

Four treatment factors at 6, 6, 4, 2 levels and one 6-level block factor
Model: block+(A+B+C+D) 2 ; Estimate: A+B+C+D\n")
N = 144 = 274 ¢ 372 experimental units
mixKey <- planor.designkey(factors=c(LETTERS[1:4], "block"),
nlevels=c(6,6,4,2,6),
block="block,
model="block+ (A+B+C+D) "2,
estimate="A+B+C+D,
nunits=144,
base="A+B+D, max.sol=2)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search

#i# => search for columns 4 to 6
first visit to column 4
first visit to column 5
#i#t == col. 5 (j = 2) 8 selected candidates
first visit to column 6
it == col. 6 (j = 3) 9 selected candidates

The search is closed: max.sol = 2 solution(s) found
Main step for prime p = 3 : key-matrix search

=> search for column 3 .

first visit to column 3

The search is closed: max.sol = 2 solution(s) found

summary (mixKey)

##

rkrkkkkkkk Prime 2 design skkkkkokkokk
##

--- Solution 1 for prime 2 ---

##

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1 = A1 B_1DC_1

#

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
1 = A_1 B_1 block_1

1 = D C_1 block_1

#

WEIGHT PROFILES

Treatment effects confounded with the mean: 471

Treatment effects confounded with block effects: 272
Treatment pseudo-effects confounded with the mean: 471
Treatment pseudo-effects confounded with block effects: 272
#i#

--- Solution 2 for prime 2 ---

#i#

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_1 B_1DC_1

##

15

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_1 D block_1

1 = B_1 C_1 block_1

##

WEIGHT PROFILES

Treatment effects confounded with the mean: 471

Treatment effects confounded with block effects: 272

Treatment pseudo-effects confounded with the mean: 471
Treatment pseudo-effects confounded with block effects: 272
#i#

#i#

krkkkkkokkk Prime 3 design kkkkokkkokkok

#i#

--- Solution 1 for prime 3 ---

#i#

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

nil

##

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_2°2 B_2"2 block_2

##

WEIGHT PROFILES

Treatment effects confounded with the mean: none

Treatment effects confounded with block effects: 271

Treatment pseudo-effects confounded with the mean: none
Treatment pseudo-effects confounded with block effects: 271
#i#

--- Solution 2 for prime 3 ---

##

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
nil

##

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = A_2 B_272 block_2

#i#

WEIGHT PROFILES

Treatment effects confounded with the mean: none

Treatment effects confounded with block effects: 271

Treatment pseudo-effects confounded with the mean: none

Treatment pseudo-effects confounded with block effects: 271

mixPlan <- planor.design(key=mixKey, select=c(1,1), randomize="block/UNITS)
print (getDesign(mixPlan) [1:25,])

A B D C block
1 1522 1
6 512 2 1
8 4222 1
10 4 2 1 4 1
15 361 4 1
17 2 4 1 4 1
19 2 4 2 2 1
24 4221 1
26 36 2 1 1

16

28

33

35

109
114
116
118
123
125
127
132
134
136
141
143
2

OO, ONOOEFR, PP, ONOOO D T W W
= Ol Wdh =000 wdd WwwNdE~E, OO,
NP, RPN, RPN RPLPNNMNERENNDENDERDN
P D WR, WWwW P, WO, PAPNDWERE WN
S I e S T T o T e S e e e e S N S =

The algorithm starts by decomposing the factors into pseudofactors that all have a prime
number of levels. Then it performs a similar decomposition of the model and estimate terms.
After these initial steps, separate key-matrix searches are performed, one for each prime involved
in the problem. The prime decompositions are automatic and transparent to the user. The
recomposition when generating a design is transparent too. In contrast, most information on the
search process and on the fraction properties are given according to the prime decompositions.

5.5 Split-plot designs

In a split-plot experiment, there are two treatment factors variety and fert, say, at m and n
levels respectively. The block structure consists of r blocks each containing m sub-blocks of size
n and the factor variety is constrained to be constant within sub-blocks.

In an orthogonal split-plot design, each variety occupies one sub-block of each block, and each
sub-block contains the n distinct levels of factor fert. In planor, this design can be constructed by
defining the block structure as a cross between a block and a subblock factor. The hierarchy
argument is used to specify that variety must be constant within the combinations of block
and subblock. Two model-estimate pairs are given to the listofmodels argument. First, the
main effect of fert and the interaction between fert and variety must be estimable when blocks
and sub-blocks are included in the model. Second, the main effect of variety must be estimable
between sub-blocks, that is, when blocks but not sub-blocks are included in the model. The
command below calculates the design key of a split-plot design with r =2, n =2, m = 2.

splitKey <- planor.designkey(factors=1list(block=1:2,
subblock=1:2,
variety=LETTERS[1:2],
fert=c("organic","mineral")),
block="block+subblock,
hierarchy=1list(“variety/(block*subblock)),

listofmodels=
list(c(“block*subblock+variety*fert, ~“fert+fert:variety),
c(“block+variety, “variety)),

nunits=2%2x%2,
base="block+subblock)

Warning in planor.modelterms(model): The factorial term fert:variety is present
in the estimate formula 1 but not all of its marginal terms. Consequently, this or

17

these marginal terms will be considered of no interest and may be unestimable in the
final design.

summary (splitKey)

alias(splitKey)

18

print (getDesign(planor.design(splitKey, randomize="block/subblock/UNITS)))

block subblock variety fert

1 1 1 A mineral
2 1 1 A organic
3 1 2 B organic
4 1 2 B mineral
5 2 1 A mineral
6 2 1 A organic
7 2 2 B mineral
8 2 2 B organic

An alternative command to get the split-plot is given below. The main difference is that the
subblock factor now takes rm levels and is considered as nested in block rather than crossed
with it.

splitKey <- planor.designkey(factors=list(block=1:2,
subblock=1:4,
variety=LETTERS[1:2],
fert=c("organic","mineral")),
block="block+subblock,

hierarchy=list(“block/subblock, “variety/subblock),

listofmodels=
list(c(“subblock+variety*fert, “fert+fert:variety),
c(“block+variety, “variety)),

nunits=2%2x%2,
base="subblock)

Warning in planor.modelterms(model): The factorial term fert:variety is present
in the estimate formula 1 but not all of its marginal terms. Consequently, this or
these marginal terms will be considered of no interest and may be unestimable in the
final design.

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors
Main step for prime p = 2 : key-matrix search

=> search for columns 3 to 5
first visit to column 3
first visit to column 4
#it — col. 4 (j = 2) 2 selected candidates
first visit to column 5
it == col. 5 (j = 3) 4 selected candidates

The search is closed: max.sol = 1 solution(s) found
print (getDesign(planor.design(splitKey, randomize="block/subblock/UNITS)))

subblock block variety fert

1 1 1 A organic
2 1 1 A mineral
3 2 1 B mineral
4 2 1 B organic
5 3 2 A organic
6 3 2 A mineral
7 4 2 B mineral
8 4 2 B organic

19

5.6 Fractional designs with nested factors and a complex block structure

We now consider an experiment with concrete and more complex specifications. This example
stems from an experiment to study the cleaning of surfaces by a robot, see [8], example 3 on
page 3. There are five treatment factors at 2 levels. The block structure consists of four plates
with 2 rows and 4 columns per plate, resulting in 32 experimental units. In addition, the design
must cope with experimental constraints between treatment and block factors. The treatment
factors concentration (conc) and temperature (Tact) must remain constant within a plate. The
treatment factors denoted by nsoil and gsoil must remain constant within each column of each
plate. Only treatment factor rugosity (Rug) can be modified freely between experimental units.

To begin with, we show how to specify user-defined factor levels, by providing a list to the
factors argument of planor.factors. Then, experimental constraints are specified through the
hierarchy argument of planor.factors.

*xxxxkkkkkkk ROBOTIA EXAMPLE %%k k% k% % % % %
Block structure: 4 plates / (2 rows z 4 columns)
Treatments: 4 2-level factors

Hierarchy 1: conc constant in plate

Hierarchy 2: Tact constant in plate

Hierarchy 3: nsoil constant in plate z column
Hierarchy 4: gsoil constant in plate = column
N = 32 units

H R R R R R R R R

robotFac <- planor.factors(factors=list(

conc=c(1,3),
Tact=c(15,30),
nsoil=c("curd","Saint-Paulin"),
gsoil=c("0.01g","0.10g"),
Rug=c(0.25,0.73),
plate=1:4,

row=1:2,

col=1:4),
hierarchy=1list(“conc/plate,
“Tact/plate,
“nsoil/(platex*col),
“gsoil/(plate*col)))

This example requires several model-estimate combinations. The main model-estimate pair
contains all the treatment factorial effects but no block effect. It guarantees that all treatment
combinations will be present in the design, since all treatment factorial effects are required to
be estimable in the model with no block effect. The second model-estimate pair (1istofmodels
argument) ensures that the Rug factor is orthogonal to block factors.

robotMod <- planor.model(model="nsoil*qgsoil*Rug*conc*Tact,
listofmodels=1list(c(“plate+row+col+Rug, “Rug)))

The base option of the planor.designkey function is used here to impose that experimental
units be associated with the combinations of the block factors.

robotKey <- planor.designkey(factors=robotFac, model=robotMod,
nunits=32, base="plate+row+col)

Preliminary step 1 : processing the model specifications
Preliminary step 2 : performing prime decompositions on the factors

20

Main step for prime p = 2 : key-matrix search

=> search for columns 6 to 10

first visit to column 6

first visit to column 7

#i#t == col. 7 (j =2) 2 selected candidates
first visit to column 8

#Hit == col. 8 (j = 3) 12 selected candidates
first visit to column 9

#i#t == col. 9 (j = 4) 8 selected candidates
first visit to column 10

#Hit == col. 10 (j = 5) 15 selected candidates

The search is closed: max.sol = 1 solution(s) found

summary (robotKey[1])

##

kxkckokokkkkk Prime 2 design kkkkkkskokokok

##

DESIGN KEY MATRIX

plate_1 plate_2 row col_1 col_2 conc Tact nsoil gsoil Rug
plate_1 1 0 O 0 0 1 0 0 0o 1
plate_2 0 1 0 0 0 0 1 0 0 O
row 0 0o 1 0 0 0 0 0 0o 1
col_1 0 0 O 1 0 0 0 1 0 O
col_2 0 0 O 0 1 0 0 0 1 0
##

TREATMENT EFFECTS CONFOUNDED WITH THE MEAN

1 = plate_1 conc

1 = plate_2 Tact

1 = col_1 nsoil

1 = col_2 gsoil

1 = plate_1 plate_2 conc Tact

1 = col_1 col_2 nsoil gsoil

1 = plate_1 row Rug

1 = row conc Rug

1 = plate_1 col_1 conc nsoil

1 = plate_2 col_1 Tact nsoil

1 = plate_1 col_2 conc gsoil

1 = plate_2 col_2 Tact gsoil

1 = plate_1 plate_2 row Tact Rug

1 = plate_1 plate_2 col_1 conc Tact nsoil
1 = plate_1 plate_2 col_2 conc Tact gsoil
1 = plate_1 col_1 col_2 conc nsoil gsoil
1 = plate_2 col_1 col_2 Tact nsoil gsoil
1 = plate_2 row conc Tact Rug

1 = plate_1 row col_1 nsoil Rug

1 = row col_1 conc nsoil Rug

##

The first 20 columns on a total of 31

##

BLOCK-and-TREATMENT EFFECTS CONFOUNDED WITH THE MEAN
nil

##

WEIGHT PROFILES

21

Treatment effects confounded with the mean: 274 374 475 579 675 773 871

Treatment effects confounded with block effects: none

Treatment pseudo-effects confounded with the mean: 274 476 372 576 674 871 776 972
Treatment pseudo-effects confounded with block effects: none

robotDes <- planor.design(robotKey[1], randomize="plate/(row*col))
print (getDesign(robotDes))

plate row col conc Tact nsoil gsoil Rug
1 1 1 1 3 15 Saint-Paulin 0.01g 0.73
2 1 1 2 3 15 curd 0.10g 0.73
3 1 1 3 3 15 Saint-Paulin 0.10g 0.73
4 1 1 4 3 15 curd 0.01g 0.73
5 1 2 1 3 15 Saint-Paulin 0.01g 0.25
6 1 2 2 3 15 curd 0.10g 0.25
7 1 2 3 3 15 Saint-Paulin 0.10g 0.25
8 1 2 4 3 15 curd 0.01g 0.25
9 2 1 1 1 15 curd 0.10g 0.25
10 2 1 2 1 15 Saint-Paulin 0.01g 0.25
11 2 1 3 1 15 Saint-Paulin 0.10g 0.25
12 2 1 4 1 15 curd 0.01g 0.25
13 2 2 1 1 15 curd 0.10g 0.73
14 2 2 2 1 15 Saint-Paulin 0.01g 0.73
15 2 2 3 1 15 Saint-Paulin 0.10g 0.73
16 2 2 4 1 15 curd 0.01g 0.73
17 3 1 1 1 30 Saint-Paulin 0.01g 0.73
18 3 1 2 1 30 Saint-Paulin 0.10g 0.73
19 3 1 3 1 30 curd 0.01g 0.73
20 3 1 4 1 30 curd 0.10g 0.73
21 3 2 1 1 30 Saint-Paulin 0.01g 0.25
22 3 2 2 1 30 Saint-Paulin 0.10g 0.25
23 3 2 3 1 30 curd 0.01g 0.25
24 3 2 4 1 30 curd 0.10g 0.25
25 4 1 1 3 30 curd 0.10g 0.73
26 4 1 2 3 30 curd 0.01g 0.73
27 4 1 3 3 30 Saint-Paulin 0.10g 0.73
28 4 1 4 3 30 Saint-Paulin 0.01g 0.73
29 4 2 1 3 30 curd 0.10g 0.25
30 4 2 2 3 30 curd 0.01g 0.25
31 4 2 3 3 30 Saint-Paulin 0.10g 0.25
32 4 2 4 3 30 Saint-Paulin 0.01g 0.25
Acknowledgements

The R package planor originates from the planor software which was written in the APL language
by André Kobilinsky in 1995. This vignette was typed using the Sweave package (Leisch, 2002[13]).

References

[1] R. A. BAILEY — “Factorial design and abelian groups”, Linear Algebra Appl. 70 (1985),
no. 349-368.

22

2]

[15]

[16]

— , Design of comparative experiments, Cambridge Series in Statistical and Probabilistic
Mathematics, Cambridge University Press, 2008.

G. E. P. Box, W. HUNTER & J. HUNTER — Statistics for experimenters, Wiley, 1978.

S. CLiQuET, C. DURIER & A. KOBILINSKY — “Principle of a fractional factorial design
for qualitative and quantitative factors: application to the production of Bradyrhizobium
japonicum in culture media”, Agronomie 14 (1994), p. 569-587.

A. CourcouL, H. MonoD, M. NIELEN, D. KLINKENBERG, L.. HOGERWERF, F. BEAUDEAU
& E. VERGU — “Modelling the effect of heterogeneity of shedding on the within herd Coz-
iella burnetii spread and identification of key parameters by sensitivity analysis”, Journal of
Theoretical Biology 284 (2011), p. 130-141.

M. F. FRANKLIN — “Selecting defining contrasts and confounded effects in p”~" factorial
experiments”, Technometrics 27 (1985), p. 165-172.

A. KOBILINSKY — “Les plans factoriels”, in Plans d’expériences: applications a [’entreprise
(J. J. Droesbeke, J. Fine & G. Saporta, éds.), Technip, Paris, 1997, p. 69-209 (Chapter 3).

A. KOBILINSKY — “PLANOR : program for the automatic generation of regular experimental
designs. version 2.2 for Windows”, Tech. report, MIA Unit, INRA Jouy en Josas, 2005.

A. KoBILINSKY, A. BOUVIER & H. MoNoOD — “PLANOR : an R package for the automatic
generation of regular fractional factorial designs. Version 1.0”, Tech. report, MIA Unit, INRA
Jouy en Josas, 2011.

A. KOBILINSKY & H. MoNOD — “Experimental design generated by group morphisms: an
introduction”, Scand. J. Statist. 18 (1991), p. 119-134.

— , “Juxtaposition of regular factorial designs and the complex linear model”, Scand. J.
Statist 22 (1995), p. 223-254.

A. KoBILINSKY, H. MONOD & R. A. BAILEY — “Automatic generation of generalised regular
factorial designs”, Tech. report, International Newton Institute Cambridge, 2015.

F. LEISCH — “Sweave: Dynamic generation of statistical reports using literate data analysis”,
in Compstat 2002 — Proceedings in Computational Statistics (W. Hardle & B. Ronz, éds.),
Physica Verlag, Heidelberg, 2002, ISBN 3-7908-1517-9, p. 575-580.

A. LURETTE, S. ToUzZEAU, M. LAMBONI & H. MONOD — “Sensitivity analysis to identify key
parameters influencing Salmonella infection dynamics in a pig batch”, Journal of Theoretical
Biology 258 (2009), no. 1, p. 43-52.

H. D. PATTERSON & R. A. BAILEY — “Design keys for factorial experiments”, Appl. Statist.
27 (1978), p. 335-343.

G. PISTONE & M.-P. ROGANTIN — “Indicator function and complex coding for mixed frac-
tional factorial designs”, Journal of Statistical Planning and Inference 138 (2008), no. 3,
p. 787 — 802.

23

