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1 Introduction

PLANOR generates design fractions with possibly one or several block systems. The
method used is derived from the key matrix method [27], described in detail in [20], [21],
[17], and more simply in [7]. This method produces designs termed regular in which effects
are either estimable independently or completely confounded.

In the simplest case, the user must provide the variance analysis model, specifying
the terms sought to be estimated in this model. PLANOR searches for one or more
designs meeting the users requirement among designs which can be constructed by this
method. As there is not always a solution, the program indicates how far it has proceeded
in the construction of the design, thus enabling the user to make a new request in order
to obtain a solution.

PLANOR can take into account hierarchical constraints among factors. It is also
possible to introduce several “models” together with the corresponding families of terms
to be estimated, called “parts to be estimated”. This feature is particularly useful in a
block design in which a factor must remain constant within each block. In such a case,
its effect is not estimable within blocks, that is, in a model with a block effect. But it
can be estimable between blocks if its estimation is requested in a model with no block
effect: confusion is thus avoided with any other treatment effect. When there are several
block systems, this feature can be used to require the estimation of certain effects in
pre-specified strata.

PLANOR was initially designed to draw up experimental designs to operate a robot.
This robot, developed by the Laboratoire du Génie de I’'Hygiéne et des Procédés Ali-
mentaires de 'INRA Massy (LGHPA) (Laboratory for public health and food process
engineering of INRA Massy) in the framework of a contract with the Association pour le
développement de la Recherche dans I'Industrie LAITiere (ARILAIT) (Association for the
development of dairy industry research) is used to test surface cleaning and disinfection
procedures. For this reason, a substantial part of the instruction manual is devoted to
the designs for this robot, which in fact very well illustrate the programs abilities.

The analysis and interpretation of the designs obtained by PLANOR is generally
simple provided the user is quite familiar with the variance analysis techniques. In par-
ticular, when there are blocks and certain factors remain constant within the blocks, the
analysis draws on notions of inter- and intra-block strata. The main effect of a factor
remaining constant within each block is tested against inter-block variance, which differs
from intra-block error variance used to test the other effects. Another case in which the
analysis requires caution is when the number of degrees of freedom of the error is very low
or zero. Additional indications and references on these subjects may be found in [19] and
[17].

The presentation adopted in this instruction manual avoids algebraic formalism,
thus rendering the text a little less rigorous but thereby making it accessible to a much
wider public. The slightly difficult passages are printed in small type and are preceded
by an asterisk. They may be skipped without affecting understanding of the rest of the
text.



2 Presentation of the method

Experimental units are identified by the levels of a certain number of factors, referred
to as basic factors. From these factors, potentially decomposed into pseudofactors, the
program defines new factors, also called added, derived or defined factors, satisfying the
conditions imposed, if possible. These factors are linear combinations of the basic fac-
tors or pseudofactors resulting from their decomposition. The following few examples
effectively illustrate the method and its properties.

2.1 Example with 2-level factors
2.1.1 Definition and properties of the design

There are 8 units identified by combinations of levels of 3 treatment factors A, B, C,
each with 2 coded levels 0 and 1. From these three basic factors, a new factor D is
defined by setting D = A+ B+ C (mod 2). This same design can also be defined by the
relation D = ABC' if the levels are coded as 1 and —1. In order to distinguish between
the two codings and associated layouts, we refer to additive notation in the first case and
to multiplicative notation in the second case. The shift from additive to multiplicative
notation occurs by replacing each « level by level (—1)®*. Table 1 presents the design in
both its forms.

D=A+B+C D = ABC

A B C D A B C D ind.rep.
0 0 0 0 1 1 1 1 0
0 0 1 1 1 1 -1 -1 2
0 1 0 1 1 -1 1 -1 7
0 1 1 0 1 -1 -1 1 1
1 0 0 1 -1 1 1 -1 6
1 0 1 0 -1 1 -1 1 )
1 1 0 0 -1 -1 1 1 4
1 1 1 1 -1 -1 -1 -1 3

Table 1: Example 2.1: 4 factors and 23 experimental units.

The factorial effects studied are the main effects A, B, C, D of the factors and
their interactions AB, AC, ..., ABCD. These effects are also noted additively: e(A) for
the main effect of A, e(A+ B), e(A+C), ..., e(A+ B+ C + D) for the interactions.
The functional notation e() with this additive notation is essential to distinguish a sum
of effects such as e(A + B) + e(C) from the corresponding interaction e(A + B + C). It
will sometimes also be used in multiplicative notation to distinguish an effect from the
corresponding product of factors (equal to -1 or 1).

The precise definition of effects is simple in multiplicative notation. If we denote
by 7(A, B,C, D) the mean response —in more statistical terms, the expectation of the

2



added deduced aliased
term equality effects
0=A+B+C+D|e(0),e(A+B+C+ D)
A A=B+C+D e(A),e(B+C+ D)
B B=A+C+D e(B),e(A+C+ D)
C C=A+B+D e(C),e(A+ B+ D)
A+ B A+B=C+D e(A+ B),e(C + D)
A+C A+C=B+D e(A+C),e(B+ D)
B+C B+C=A+D e(B+C),e(A+ D)
A+B+C| A+B+C=D e(A+B+C),e(D)

Table 2: Aliased effects in the example 2.1.

response— for the (A, B, C, D) treatment, the main effect of A and the AB interaction are
for instance defined by

) = 16A;DATABCD ZAT
= %(7‘(1,.,.,.)—7_(_17°7‘7‘))
e(4B) = 16A32;DABTABCD ZABT By

= (r@L ) L) L L ) (L L)

Each (.) point indicates that the mean has been determined from the corresponding
letter. For example:

1
(A,B,.,.) = (T(A, B,1,1) + 7(A, B,1,-1) + 7(A, B, —1,1) + 7(A, B, 1, —1))

The defining relation D = A + B + C(mod 2) is rewritten in the form
A+B+C+D=0 (mod?2). (1)

By adding to this equality the sums A, ..., A+ B 4+ C formed from the three basic
factors, we obtain the equalities appearing in the second column of table 2. Through the
following simple rule, the sets of aliased effects appearing in the third column of the table
can then be obtained. Note that the terms confounded and aliased are synonymous in
this context, therefore we shall use both terms indifferently.

Rule 1 The effects corresponding to two equal sums o and B are aliased.

Note that e(0) is by definition the general mean. The interaction e(4A + B + C + D) is
thus confounded with this general mean.



In this instance, the confounding of two effects, for example e(A + B) and e(C + D)
results in the fact that only their sum e(A+ B) +¢(C + D) can be estimated. The aliased
effects are the same when 1 is added to the definition of D, thatis,if D = A+ B+C +1
(mod 2), or even

A+B+C+D=1 (mod?2), (ABCD = -1 in multiplicative notation) .  (2)

In this case, it is not the sums but the differences, such as e(A + B) — e(C + D), which
are estimable.

Examination of the third column of table 2 shows that the main effects are coun-
founded in this example with 3-factor interactions and that two-factor interactions are
confounded with each other. This results from the fact that the defining relation (1)
contains 4 factors. Such a design is said to be of resolution 4. When 3-factor or 4-
factor interactions are neglected, each of the sums e(A4) + e(BCD), ..., e(ABC) +e(D)
containing a main effect reduces to this main effect. The main effects are then estimable.

2.1.2 Principle of a design search by PLANOR

In the above, the properties of the design are inferred from its definition. PLANOR
generally proceeds in reverse order. It searches for the design on the basis of the model
and part to be estimated. Thus in this example, after specifying the basic factors A, B,
C and factor D to be defined, the model and part to be estimated are introduced in the
following symbolic form

model : A+ B+C+D+AB+AC+AD+BC+BD+C.D
parts to be estimated : A+ B+C+ D.

The program explores the possibilities for D. It eliminates choices which do not
enable estimation of the effects of A, B, C, D in the framework of the model considered.
For instance, choice D = AB is eliminated because it leads to confounding of the main
effects A, B, D with interactions BD, AD, AB, respectively. In this instance, the only
valid choice is D = £ABC, i.e. in additive notation, D = A+ B+C or D = A+ B+C+1.
After selection at random or by the user of the constant 0 or 1 added to A+ B + C' in
order to obtain D, PLANOR constructs the design in the systematic order which appears
in table 1. This design is stored in a file with the suffix .PS. The letters PS are the French
initials for Systematic Design (Plan Systématique).

2.1.3 Randomization

The allocation of treatments to experimental units (plots in agriculture, animals in animal
science, procedure number in a laboratory experiment, ... ) is generally random. In the
present case, there are no blocks and such random allocation, called randomization, is
achieved by randomly drawing the unit number allocated to each of the 8 treatments.



The number drawn is denoted by repetition index in the randomized design. A possible
result of this draw is provided in table 1.

In order to obtain a design from table 1 which may be readily used, it is necessary
to replace the level numbers by the actual levels, to sort into an appropriate order, etc.
... . These ancillary operations can be performed by selecting the option recoding, factor
selection, sorting, ... in the general menu (table 53).

2.1.4 Alternatives for the writing of the model

4%

PLANOR automatically completes the model by adding the constant and terms “in-
cluded” in one of the interactions. The writing of the above model can thus be shortened
by omitting the main effects since each of the latter is included in an interaction:

model: AB+AC+AD+BC+B.D+C.D

When there are many factors, writing the model can become tedious. In order to
shorten the process, brackets can be used. We then develop by deleting the redundant
factors in each effect followed by the redundant effects.

Thus

(A+B+C+D)A+B+C+D) — AA+AB+AC+AD+BA+BB4+B.C+B.D
+C.A+CB+C.C+CD+DA+D.B+D.C+D.D
— A+ AB+AC+A.D+BA+ B+ B.C+ B.D
+C.A+C.B+C+C.D+D.A+D.B+D.C+D
— A+AB+AC+AD+B+BC+BD+C+CD+D

therefore the previous model can still be written in the form

(A+B+C+D)YA+B+C+D).

Rewriting the expression A + B + C' 4+ D twice can be avoided, by defining this
expression as a model part to which a label is assigned which can be re-used in the model
and in the part to be estimated.

model part P:A+B+C+D
model pP.P
part to be estimated P

It should be noted that the dots separating factors in each term may be replaced by
spaces: P P is equivalent to P.P.

If the model is intended to contain all except for one or two interactions, say B.C,
B.D, it may be convenient to use an expression such as P.P ~ B.C'+ B.D which uses
the sign ~ to subtract the two interactions from model P.P. The right-hand side of ~
can also be written B(C + D). However, in contrast to the P.P part on the left-hand side
of ~, this part on the right-hand side of the ~ sign is not completed by the subterms,
namely, the main effects B, C', D. Thus only the interactions B.C, B.D are deleted from
the model in this instance. Note that it may be necessary to type something after ~ to
make it effectively appear on the screen.



D=A+B+C D = ABC Randomization
Bl=A+B+2C Bl = ABC? (see table 5)
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Table 3: Example 2.2: 4 3-level factors on 3 blocks of 9 units

2.2 Example with 3-level factors
2.2.1 Definition and properties

There are 27 units defined by 3 treatment factors A, B, C' with 3 coded levels 0, 1, 2. A
new treatment factor D and a block factor Bl are defined by setting D = A+ B + C and
Bl= A+ B+2C (mod 3).

The resulting design is given in table 3. The multiplicative notation appearing in
the middle of this table uses the cube root j = exp(27/3) of the unit, which replaces the
—1 used in the case of 2-level factors.

The factorial effects of the main effect of A are A, A%, and those of the interaction
between A and B are AB, A?B?, AB? A?B. The factorial effects of the other main
effects and interactions are enumerated similarly. In additive notation, these same effects
are noted e(A), e(24), e(A+ B), e(2A+2B), e(A+2B), e(2A + B), etc ... The precise
definition of these effects, associated with a decomposition into orthogonal contrasts also
referred to as orthogonal degrees of freedom, is by no means essential to understanding
and using PLANOR.

By adding 2D to the equality D = A + B + C' and by then multiplying the result
by 2 (mod 3), the following is obtained:

0=A+B+C+2D=2A+2B+2C+D. (3)



The addition of 27 linear combinations between the basic factors A, B, C then gives rise
to the equalities appearing on the left side of table 4. The block effects Bl and 2B{ equal
to A+ B+ 2C and 24 + 2B + C, respectively, have been added in brackets (caution:
2x2C =4C=Cmod 3).

The rule 1 makes it possible to immediately infer from these equalities the sets of
aliased effects, which appear on the right side of table 4.

The following properties of the design (which may be checked in table 4) are directly
inferred from the (3) equalities.

e A main effect is only confounded with interactions of three or more factors.

e Among the four degrees of freedom of an interaction between two factors, two are
aliased with another two-factor interaction, and two are only aliased with interac-
tions of three or more factors.

e There is no set of three aliased effects which only contains three- or four-factor
interaction effects.

The latter property shows that any other definition of Bl would make the block effect
confounded with at least a two-factor interaction. However, the option selected here makes
the interaction effects e(C'+ D) and e(2C + 2D) inestimable even though interactions of
three or four factors are assumed to be null. A wiser choice would be Bl = C + 2D.
This choice would enable confounding of the block effect with effects e(C' 4+ 2D) and
e(2C + D) which are already confounded with other 2-factor interactions and are in any
case inestimable.

The design thus provides the possibility of estimating all the main effects in the
model including two-factor interactions and the block effect. The specifications resulting
in such a type of design with PLANOR are:

model part P:A+B+C+D
model Bl+ P.P (4)
part to be estimated P

2.2.2 Search by PLANOR for several solutions and selection through the
study of aliases

It is possible in this small-scale example to request the set of solutions satisfying the
requirement defined by (4). In this way 144 solutions are obtained. Under the hypothesis
that interactions of three or more factors are null, one third of these solutions enable
the estimation of half of the degrees of freedom for each two-factor interaction. The
other two-thirds moreover make the two other degrees of freedom of a certain interaction
confounded with the blocks. It is not possible to specify to the program that a design of
the appropriate third is preferentially sought, but the solutions found by the option study
of aliases in the general menu (table 53) can be studied a posteriori.



equalities induced by (3) aliased effects

0 = A+B+C+2D =2A+2B+2C+D| e(0), e(A+B+C+2D), e(2A+2B+2C+ D)
c = A+B+4+2C+2D = 2A+2B+D e(C), e(A+ B+ 2C +2D), e(2A + 2B + D)
2C = A+B+2D =2A+42B+C+D e(2C), e(A+ B +2D), e(2A+ 2B+ C + D)
B = A+2B+C+2D = 2A+4+2C+D e(B), e(A+2B+ C+2D), e(2A+2C + D)
B+C = A+2B+2C+2D = 2A+ D e(B+C), e(A+ 2B +2C + 2D), e(2A + D)
B+2C = A+42B+2D = 2A+C+D e(B+2C), e(A+2B+2D), e(2A+ C + D)
2B = A+C+2D =2A+B+2C+D e(2B), e(A+ C +2D), e(2A+ B+ 2C + D)
2B+C = A+4+2C+2D = 2A+B+D e(2B + C), e(A+2C +2D), e(2A+ B+ D)
2B+2C = A+2D = 244+B+C+D e(2B 4 2C), e(A +2D), e(2A+ B+ C + D)
A = 2A+B+C+2D = 2B+2C+D e(A), e(2A+ B+ C +2D), e(2B +2C + D)
A+C =2A+B+2C+2D = 2B+ D e(A+C), e(2A+ B+2C +2D), (2B + D)
A4+2C = 2A+B+2D = 2B+C+D e(A+2C), e(2A+ B+ 2D), ¢(2B+ C + D)
A+B =2A+2B+C+2D = 2C+D e(A+ B), e(2A+ 2B + C +2D), e(2C + D)
A+B+C =2A+2B+2C+2D= D e(A+ B+C), e(2A+ 2B +2C + 2D), (D)

[Bll]= A+ B+2C = 2A+2B+4+2D = C+D le(Bl)],e(A+ B +2C),e(2A+ 2B + 2D),e(C + D)
A4+2B = 244+4C+2D = B+20+D e(A +2B), e(2A + C + 2D), e(B +2C + D)
A4+2B+C = 2A+2C+2D = B+D e(A+2B+C), e(2A + 2C +2D), e(B + D)
A+2B+2C = 24 +2D = B+C+D e(A+ 2B +2C), e(2A +2D), e(B+ C + D)
24 = B4+C+2D =A+2B+2C+D e(2A), e(B+ C +2D), e(A+2B +2C + D)
24+C = B+4+20+42D = A+4+2B+D e(2A+ C), e(B +2C +2D), e(A+2B + D)
24+2C = B+2D = A+2B+C+D e(2A +2C), e(B+ 2D), e(A+2B+C + D)
2A+B = 2B+C+2D = A+42C+D e(2A+ B), e(2B+ C +2D), e(A+2C + D)
2A+B+C = 2B+2C+2D = A+D e(2A+ B+ C), e(2B +2C +2D), e(A + D)
2A+ B+2C = 2B + 2D = A+C+D e(2A+ B+2C), e(2B + 2D), e(A+ C + D)
2442B = C+2D = A+B+2C+D e(2A 4 2B), e(C +2D), e(A+ B 4 2C + D)

[2Bl]=2A+2B+C = 2C +2D = A+B+D [e(2B1)],e(2A + 2B + C),e(2C + 2D),e(A+ B + D)
2A+4 2B +2C= 2D = A4+ B+C+D e(2A 4+ 2B + 2C), e(2D), e(A+ B+ C + D)

Table 4: Aliased effects in the example 2.2.

The remainder of this paragraph presents the result of the study of aliases for each
type of solution. The solution corresponding to the appropriate third is solution 1 which
leaves, for each of the 6 two-factor interactions, 2 unaliased degrees of freedom. The
solution corresponding to the inappropriate third is number 34 in which an interaction is
completely confounded and for which there are thus only 5 interactions with 2 unaliased
degrees of freedom.

The equalities defining each design are presented in the form of a key matrix with
one row for each basic factor. Each factor that appears either in the model, in the part to
be estimated, in the hierarchies or among the predetermined factors, is associated with a
column of this matrix specifying the linear combination of the basic factors which defines
this factor.

In fact, several disjoint designs with similar properties are obtained by adding to
each factor modulo 3, an integer included between 0 and the “cR” coefficient given at the
top of the corresponding column.

The study of aliased effects, also referred to as alias, begins with the writing of a
synthetic table from which the lists of aliased effects are easily obtained. This table is
an intermediate technique which is only of interest for highly skilled users. The ordinary
user may, without inconvenience, skip the paragraphs in small type containing this table
and related comments.

The standard proposed model for the study of aliases is the model introduced ini-
tially for the design search. This may be modified without any problem immediately prior
to the study of aliases.



Outputs of the study of aliases for the two solutions adopted

Solution 1 (prime 3 )

The levels of a factor at the top of a column are obtained by multiplying the levels of
the basic factors appearing at the left of the row by the coefficients in the column and by
adding a predetermined integer lower than cR. Calculations of levels performed modulo 3.

blocs *

cR 2 0 2 0 0

3 3 3 3 3

A B C D BI

3 A 1 0 0 1 1
3 B 01 0 1 1
3 C 0O 01 1 0

Study of aliased effects.

The columns of the matrices below provide the defining relations of the design (kernel of the key
matrix) from which the aliased effects are inferred.

- The columns of the first matrix generate all the treatment effects confounded with the general
mean. By adding the vectors with coordinates <cT, all the sets of confounded treatment effects
can be inferred.

- The linear combinations with coefficients <cBT in the columns of the second matrix provide the
confounded block effects and, for each of these, one of the treatment effects with which it is
confounded. The other treatment effects confounded with this block effect are obtained by adding
the treatment effects confounded with the mean.

- The sets of treatment effects confounded with each other but not with a block effect can be obtained
directly by adding one of the non-zero vectors with coordinates <cTB to the sets of treatment
effects confounded with the blocks.

- The unconfounded block effects are obtained by adding a non-zero vector with coordinates <cB
to the confounded block effects.

- In the sets of confounded effects obtained as described above, a detailed analysis of aliases only
includes those aliases which effectively appear in the model (which may lead to differences in the
repartition of effects).

¢cBT 2
order 3 3

¢cB ¢I' ¢T'B bl
0 2 2 3 A1 A0
0 2 0 3 B 1 B 0
0 2 2 3 C 1 c 2
0 0 0 3 D 2 D 1
0 0 0 x 3 Bl 0 Bl 2
t t
matrix n® 1 n® 2




e List of treatment effects confounded with the mean
: ABCD?* A’B?C?D;

e Sets of aliased effects in the model. If the set contains a block effect, the latter is
indicated in brackets.
[Bl]; C?D; AB;
[BI?]; CD?; A%B?;
AC; B?D;
A?D; BC;
AD?; B2C?
A?C?; BD?

e list of unaliased treatment effects

A; A2B; B?; A%, B; AB%,C; D; C?D?;
AD; B?C; A*C; BD; C?; CD; D% AC?
B?D?, BC?; A2D?;

e list of unaliased block effects: empty

Solution 34 (prime 3 )

Calculations of levels performed modulo 3.

blocks *
cR 2 0 2 0 0
3 3 3 3 3
A B C D BI
3 A 1 0 0 2 2
3 B 0O 1 0 1 1
3 C O 0 1 1 2
Study of aliased effects.
cBT 2
ordre 3 3
cB I' ¢cI'B bl
0 2 2 3 A1 A0
0 2 2 3 B 2 B 0
0 2 0 3 C 2 C 2
0 0 0 3 D 1 D 2
0 0 0 x 3 Bl 0 Bl 1

e List of treatment effects confounded with the mean

: AB*C*D; A>BCD?;

10



e Sets of aliased effects in the model. If the set contains a block effect, the latter is
indicated in brackets.

[BI?]; C2D?
[Bl]; CD;
A?C; B?D;
A?D?% B2C?;
A?B; C?D;
AB?;CD?
BC; AD;
BD?; AC?

e list of unaliased treatment effects

A; BD; BC?; A%, B2C; B?D?; B; AC;
AD?; AB:; C; D?; B?; A’2D; A?C?; D; C?; A’2B?;

e list of unaliased block effects

2.2.3 Randomization of a block design

Randomization takes place in two stages. Real experimental unit blocks are numbered
and the number of the real associated block is chosen randomly for each block number
appearing in the systematic design. The unit number allocated to each treatment is then
drawn at random. Table 5 shows a possible result of this randomization which leads
to the columns entitled Bly and ind-rep of table 3. Column Bl, provides the number
of the real block, and ind-rep provides that of the block unit. These columns appear
following randomization in a file with the suffix .PR — Plan Randomisé — inferred from
the systematic design .PS by replacing the initial numbers in column Bl by the numbers,
drawn at random, of the real blocks and by adding column #nd-rep. As in example 2.1, in
order to obtain a ““ready-for-use” file from this .PR file, several related transformations
are required including, in particular, sorting of Bly and ind-rep.

block nb. in the systematic design 0 1 2
real block nb. 2 1 0

nb. of the units allocated
Bl to block treatments

0 21570486 3
1] 6 0 2 8 7 4 31
2] 6 1 78 2 4 0 5

Table 5: Randomization of a block design
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2.3 Example of a combination of factors with 6, 4 and 2 levels
2.3.1 Definition and properties. Decomposition into pseudofactors

There are 144 existing units distributed into 6 blocks — factor Bl —, over which 4 treatment
factors A, B, C, D with 6, 6, 4 and 2 levels, respectively, are tested. Apart from D which
only has 2 levels, each of these factors is decomposed into 2 pseudofactors as indicated in
table 6. Note that the program uses the symbol “_” to indicate subscripting: A_1 for Ay,
B_2 for B, etc ...

A A A B B, B, Bl  Bly Bl

1 1 2 1 1 2 1 1 2 C C; G
2 1 1 2 1 1 2 1 1 1 1 1
3 1 0 3 1 0 3 1 0 2 1 0
4 0 2 4 0 2 4 0 2 3 0 1
Y 0 1 Y 0 1 3 0 1 4 0 O
6 0 0 6 0 0 6 0 0

Table 6: Decomposition into pseudofactors in example 2.3.

Factors A, B, C' are taken as basic factors. Then Bl and D are defined by the
following equalities:

Bll = A1 + Bl + Cl (mod 2)
Blz = A2 + 232 (mod 3) (5)
D = A1 + Bl —+ 01 + 02 (mod 2)

2.3.2 Study of aliases

In order to perform the study of aliases for this specific design, the equalities defined by
(5) are inserted in the frame “predetermined factors’ of screen 2 (frame appearing on the
bottom-right of figure 3) in the following form:

Blll : A1+B1+4+C1
Bl .2 : A2+2B2
D : A14+B1+C1+C2

We specify in the frame added factors of this same screen that Blis a block factor.

It is assumed that the model contains a block effect and a treatment effect including
the main effects and interactions of two factors. In view of the fact that it is automatically
completed by PLANOR, this model may be written as:

Bl+AB+AC+AD+B.C+BD+C.D,

or even using a model part

model part P: A+B+C+ D
model Bl+ P.P

12



On the basis of this model entered in screen 6 (see § 5.7 and figure 8), the study of
aliases provides the results which follow. In the current version, these results are given
separately for primes 2 and 3 which divide the number of units.

Prime 2

e List of treatment effects confounded with the mean

; A1B1C1Cy Dy

e Sets of confounded effects in the model. When the set contains a block effect, the
latter is indicated in brackets.

A1 By; C1Cy Dy
A1 D; B,C1Cy;
B D; A1 C1Cy;

e list of unaliased treatment effects

A1; B1Cy; By; A1Cy; Cy; Co; D A1 Co; B1Cy; C1D; CrCy;

e list of unaliased block effects: empty.

Prime 3

e List of treatment effects confounded with the mean: empty.

e Sets of aliased effects in the model. If the set has a block effect, the latter is indicated
in brackets.

[Bl5]; A5 By;

e list of unaliased treatment effects
; Ao; Bo; A3 B35 A3; Ay Bo; B

e list of unaliased block effects: empty

The aliased effects in the global design can easily be deduced from these studies
conducted separately for primes 2 and 3. The general rule is simple. Every effect is
decomposed into a product asas in which ay and a3z may be expressed from the 2- and
3-level pseudofactors, respectively. For example, ap = A; D and a3z = Ay B2 for the effect
A1 A3B2D. So asaz and (33 are two effects thus decomposed.

13



Rule 2 asa3 and P23 are confounded if and only if as is confounded with By and as s
confounded with (3.

In particular, if neither ay, nor a3 are confounded, the effect asa is not confounded. For
instance, in this example A;, Ay et A2 are not confounded, and neither are the products
A Ay, AjA3. The 5 degrees of freedom of A are thus estimable. Similarly, it can be
observed that the other main effects are estimable in the model which includes all the
interactions of two treatment factors and the block effect.

Let us now examine an interaction such as AB. The 25 corresponding effects are all
shown in table 7 with, in the same cell, the other effects with which they are confounded.

Only three degrees of freedom are confounded with non-negligible interactions: A;B;
confounded with C1CyD, Ay B2, A3B, confounded with Bly, BI3.

A, B A\ B, C.CyD

A2 AlAQ B1A2 A1B1A2 AQClch

A2 A, A2 | BAZ | A B A2 AXC.ChD

By, |ABy |BiB, |A BB, B,CiC,D

BZ |ABZ |BiBZ |ABBZ BCCoD

AyB, | A1 AyBy | BiAsBy | A BiAsBy Ay B,C1CoD
AZBZ | A, A2BZ | B,AZBI | A, B\ AZBZ A2B2C,C,D
A,BZ | A, A,BZ | BiA;B2 | A\B{A,B2 A,B2C,C>D
Bl, |ABl, |BiBly, |ABBl, CiCyDBl,

AZB, | A, A2B, | BiA2B, | A\B,AZB, A2B,C.CsD
BZ | ABZ |BBZ |ABBZ C,C,DBE

Table 7: Confounding for effects involving 2- and 3-level pseudofactors
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3 Examples of designs for the ARILAIT robot

With a view to measuring the effectiveness of cleaning and disinfection of open surfaces,
the LGHPA laboratory and the ARILAIT association, already mentioned in the introduc-
tion, set up a robot which could soil, then clean and disinfect a surface in reproducible
conditions [6]. The surface is a stainless steel plate containing 16 circular test specimens
measuring 5 cm in diameter, laid out on the plate as indicated in figure 1.

O O O O
O O O O
O O O O
O O O O

Figure 1: Position of test specimens on the plate

A variety of factors are likely to influence effectiveness of cleaning and disinfection.
These include, for instance, the nature of the material of which the test specimen is made,
its roughness, the type and quantity of soiling, bacterial concentration in the soiled area,
the nature, concentration, application temperature and duration of action of each of the
products used for cleaning and disinfection.

Operating the robot is subject to certain constraints. It moves by row and column,
and the levels of factors cannot vary ad libitum from one specimen to the other. Fur-
thermore, effectiveness of cleaning and disinfection is assessed by comparing the cleaned
and disinfected specimen with a control specimen that is similarly soiled but not cleaned.
For each treatment, at least at the soiling stage, two identically treated specimens are
required.

3.1 Creation of a full factorial design that incorporates manip-
ulation constraints

3.1.1 Objective and constraints

In the example in this paragraph, a single commercial product - a chlorinated alkaline
agent - is applied in the form of foam to clean and disinfect. The factors studied are
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n-soil : nature of the soiling ......... ... .. .. oL curd
Saint-Paulin.

g-soil : quantity of soiling deposited on the test specimens,  0.01 g/specimen
varied by placing a weight on the robot arm 0.10 g/specimen.
Rough: roughness of test specimens ..................... 0.25pum
0.73pm.
conc : concentration of the cleaning and disinfection 1%
product 3% (v/v)
T-act : duration of action of the product................ 15mn
30mn.

In this experiment, there is no watertight partition preventing the diffusion of foam
from one part of the plate to another. The latter two factors, concentration and duration of
action of the product thus necessarily remain constant throughout the same manipulation
of the plate. In order to study the 4 combinations of these two factors, (1%, 15mn), (1%,
30mn), (3%, 15mn), (3%, 30mn), at least 4 such manipulations are required, that is to
say, 4 plates for 4 weeks of experimenting. To study variability from one plate to another,
two of these combinations, (3%, 15mn) and (1%, 30mn), are repeated, which results in a
total of 6 plates.

The 8 combinations of levels of the other three factors can be tested on each of the
6 plates: (curd , 0.01g/e, 0.25um), (curd , 0.10g/e, 0.25um), (curd , 0.01g/e, 0.73pum),
(curd , 0.10g/e, 0.73um), (StPaul, 0.01g/e, 0.25pm), (StPaul, 0.10g/e, 0.25um), (StPaul,
0.01g/e, 0.73um), (StPaul, 0.10g/e, 0.73um), by placing a treated test specimen and its
associated control for each of these treatments.

To facilitate manipulations, soiling is performed column by column, and the nature
and quantity of soiling are only modified when moving from one column to another. Two
test specimens of each roughness, with one acting as a control for the other, are placed
in each column. At the cleaning stage, the treated specimens are replaced in the same
position and the control specimens are replaced by other specimens which are only used
to fill the holes.

In this example, the design is thus clearly defined and an algorithmic search is
useless. Nevertheless, it is worth considering how to proceed to create and randomize this
design practically.

3.1.2 Creation by juxtaposition of two sub-designs

As already mentioned, the 6 plates are made up of a 4-plate design including the set of
4 x 8 treatments and of a 2-plate design including half of these treatments.

These two designs, denoted ROBOT1A and ROBOTI1B, respectively, are obtained
separately and then merged. For each design, the basic factors are the plate number pl,
the column number in the plate col, the unit number in the column u. The defined factors
are the treatment factors: n-soil, ¢-soil, Rough, conc, T-act. Figures 2 and 3 provide the
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two screens which allow to define the search for ROBOT1A. The content of both screens
is detailed in § 5.4.

Il P| AMOR : search for regular designs

General parameters ‘ factors, models, ete .. ]

name [[FIEEAREY number of units |32

définition of basic factors 1user i
factor decomposition type 1ma:4imum i

Backtrack search ~random link | if >0 defines a random order of
search for each factor
~max nbozal [

- lirviit tirne: 10 mn [can be modified when it is reached
or after arinterruption by “Atn]

inchuzion of factors in the v
ineligible set 7

comrment Deszign for 4 plates of 8 units, confounding the plates with the
product Factor concentration = [lime of action of disinfectant]

k. End lozal help general help

Figure 2: ROBOT1A Design, screen 1

The “hierarchy” field in screen 2 (fig. 3) specifies that conc, T-act are defined from
the plate number pl, and n-soil, g-soil from the plate number pl and the columnn number
in the plate col. Thus conc and T-act are necessarily constant for each plate and n-soil
and g¢-soil are constant for each column of the design found.

The ROBOT1A must be complete, i.e., involving each of the 25 treatments defined
by n-soil, g-soil, Rough, conc, T-act. In order to ensure this, a model including the
interaction of the 5 factors is introduced in the model area of screen 2. The program
automatically completes this model by entering all the terms included in this interaction,
from the constant to the interactions between four of these factors.

The part to be estimated that is associated with this model is left empty. The
program then automatically includes the general mean in this part. The latter can there-
fore not be confounded with any of the effects appearing in the model and this condition
entails that the 2° treatments are effectively present in the design.

The ROBOT1A.REG file may be used as the starting point for the construction of
the ROBOT1B design. In screen 1, the name is replaced by ROBOT1B, and the number of
units by 16. In screen 2, the number of levels of plis replaced by 2 and T-act, for instance,
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Bl PLANOR : search for regular designs

factors, models, etc .. ]

- idded factors -
fact,

General parameters
i~ Basic factors
fact. nb.lew bl

L
e
F

=
1«

li

levels [1]

£ ) S e

levels [2]

dec higrarchies I

il

EmmEm
B B B

Levelz [1]; azsociated withnbs 1,2, 3, ...
[2] : azzsociated with pseudofactar levels comb.

L
=

‘Model parts

[1]
[2]
[3]
[4]
[5]

Model (s5)

[1]
[2]
[3]
[4]
[5]

n—-zou g-sou Ruy conc T-act

Terms to be estimated

[1]
[2]
[3]
[4]
[5]

Hisrarchies

[1]
[2]
[3]
[4]
[s1

n—-sou: pl col
g-zou:pl <ol
conc: pl
T-act: pl

iPrede.termined tactors

1011

[2]
[3]
[4]
[s1

oK

End

I local help J generalhelp‘

Figure 3: ROBOT1A Design, screen 2
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is deleted from the model. The design obtained thus includes all the combinations of levels
of the four factors remaining in the model.

However, T-act does not appear in the model, and there is nothing to preclude it
from remaining constant in this second design. In order to compel it to assume both
its levels, a second model may be developed, containing only T-act together with an
empty part to be estimated. The latter precaution is nonetheless useless if the factors,
in particular T-act, are from the outset declared ineligible in the corresponding field of
screen 1 (fig. 2), above the comments area. This means that none of the main effects
can be confounded with the general mean or, similarly, that each of the factors assumes
its whole set of levels in the design.

The results of the PLANOR search are saved in an ASCII file which the user may
then print or consult with any editor. The standard file name proposed for this file consists
of the name of the experiment followed by the suffix OUT. Following the development
stages of the two designs, the files ROBOT1A.OUT and ROBOT1B.OUT are thus ob-
tained which contain the values of the parameters determining the search and the key
matrices. These key matrices are provided in Table 8.

ROBOT1A Design

2 2 2 2 2 2 2 2 2
ply pl, coly cola n-soil g@-soil Rough conc T-act
2 pl 1 0 0 0 0 0 0 1 0
2 pl, 0 1 0 0 0 0 0 0 1
2 coly 0 0 1 0 1 0 0 0 0
2 coly 0 0 0 1 0 1 0 0 0
2 u 0 0 0 0 0 0 1 0 0
Plan ROBOT1B

2 2 2 2 2 2 2 2

pl coly cola n-soil g-soil Rough conc T-act

2 pl 1 0 0 0 0 0 1 1

2 col; O 1 0 1 0 0 0 0

2 cols O 0 1 0 1 0 0 0

2 u 0 0 0 0 0 1 0 0

Table 8: Key matrices of the ROBOT1A and ROBOT1B designs

Here, these matrices lead to taking n-soil=col, , ¢-soil=coly, Rough=u, conc=pl,
T-act=ply to construct ROBOT1A and n-soil=col, , g-soil=coly, Rough=u, conc=pl, T-
act=pl for ROBOT2. coly, colp, denoted by col_1, col_2 in the program, are the pseudo-
factors resulting from the decomposition of the 4-level factor col and, similarly, pli, pl,
denoted by pl1, pl 2, are those resulting from the decomposition of factor pl in the
ROBOTI1A design.

It appears in figure 2, field maz. nb. sol. that a single solution is requested. In
this case, after obtaining the single key matrix, the program automatically moves on to
constructing the design stored in the associated PS file, ROBOT1A.PS or ROBOT1B.PS.
The content of this file can then be edited or manipulated by using the option recoding,
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factor selection, sorting, ... in the general menu (tab. 53). This option displays the
menu on the left-hand side of screen 4 (fig. 4).

Sub-option writing nb., in particular, enables writing of these designs such as they
appear in table 9. Levels in this table are provided by number, starting with 0. It is
possible to perform more explicit writing through sub-option writing which, for all the
factors previously recoded by the user, replaces the numbers by the levels entered. An
example of this type of writing is provided in table 11.

Once the ROBOT1A.PS file is obtained, in this case, the randomization module call
follows. In order to avoid this randomization, which is here useless since ROBOT1A is
only a part of the design, the module is interrupted by a esc.

3.1.3 Merging of the two designs

In the absence of recoding, the levels given to a p-level factor are their numbers O, ...,
p — 1. Thus, if factor pl has not been recoded, its levels are 0, 1, 2, 3 in the ROBOT1A
design and 0, 1 in the ROBOT1B design. Merging of the two designs subsequently results
in an inappropriate design: factor plhas 4 levels instead of 6 and there are 16 units instead
of 8 for each of the 0 and 1 plates.

It is therefore indispensable, before merging the designs, to recode the levels of factor
pl. This can be achieved in two ways:

e when creating the design, by placing the cursor on the factor to be recoded and by
clicking on one of the two buttons “levels (1)”, “levels (2)” (fig. 3)

e by modifying a PS file already created by the option recoding, factor selection,
sorting, ... in the general menu and the sub-option new fact.. We indicate that pl
is sought to be redefined by typing pl : plin the window ad-hoc, then we click on
the button “levels” (fig. 4).

After recoding, the selection merge files in the option recoding, factor selection,
sorting, ... makes it possible to merge files. In the resulting file, in this instance called
ROBOTI.PS (tab. 9), only factors common to both files are selected. The pseudofactors
pli, ply present only in ROBOT1A are thus eliminated from the outset. The levels selected
following the merge are those which appear in either of the files. They are numbered from
0 to the total number of levels.

3.1.4 Randomization taking into account block structure

In order to be effectively implemented, this ROBOT1 design must be randomized by
option Randomization in the general menu (tab. 53). This randomization process must
involve switching plates around so that concentration and duration of action are always
constant for each plate following randomization. Similarly, the columns of each plate must
be switched around. This is indicated to the program by the randomization model which
includes the terms pl and pl.col (fig.5).
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Table 9: ROBOT1, 1A, 1B designs before randomization (.PS files)

1. In writting these designs, performed with option write nb., the levels are provided by their

numbers.

2. the asterisks above pl and col indicate that these factors have been defined as block factors.
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M PLANOR ; search for regular designs

file : ROBOT1E.FPS

Help

List of factors

col_ 1 col 2 pl
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1
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Figure 4: ROBOT1B design, Redefinition of the levels of pl. Screen 4
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Figure 5: Randomization of the ROBOT1 design, screen 3
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The random permutation of the 6 plates and the 6 random permutations of the
4 columns of each plate are completed by the 24 permutations of the 2 units in each
column. In the output, the levels drawn at random by randomization replace the levels of
the systematic design in columns pl and col. An additional column, ind-rep, the repetition
index, allows to identify the unit in each column. The treatments thus remain in the same
order as in the systematic design but the associated block levels relate to the actual units
drawn by randomization. The randomized design is stored in the ROBOT1.PR file and
is also writed in an ASCII file, with ROBOT1.OUT as the file name.

The randomized design units can be reordered appropriately for manipulation by
the robot, by using sorting of the option recoding, factor selection, sorting, ... (fig.4),
initially with the plates, then with the columns, and finally with the repetition index,
as sorting keys. The order used in this sorting for the levels of a factor is the natural
increasing order, alphabetic or numerical, according to the level type (in the alphabetical
case, capital letters are placed before all lower case letters).

Tables 10 and 11 provide the randomized file before and after sorting, writed with
both the numbers of the levels (write nb.) and the levels entered by the user (writing). It
should be noted that sorting is performed on the levels entered by the user rather than
on the numbers of these levels.

Remarks:

e The fact that col only appears in the randomization model in conjunction with
pl indicates a hierarchical relationship and entails that random permutations of
column numbers occur independently from one plate to the other. Similarly, the
repetition index, considered to be nested within all the other factors, is separately
randomized in each column of each plate. A different choice of model could be made
if the plate was in a vertical position with, for example, column 1 at the top and
column 4 at the bottom. It would then be necessary to take into account, both in
the construction and in the randomization of the design, a potential column effect
arising from differences in soiling or cleaning as a function of height. The column
factor would then be crossed with — and no longer nested within — the plate factor.

e The type of randomization performed, thoroughly studied in [4], normally leads
to a model for analysis in which a certain number of terms appear, referred to as
ancestral terms, which are automatically deduced from the randomization model. In
this example, the terms appearing in the ASCII file created by randomization, are pl,
pl.col, pl.col.ind-rep. Associated effects in the variance analysis model are random
and the analysis is normally performed by a procedure that takes into account these
random effects (see [3], [19]).

e The introduction of factors pl and col is rendered indispensable here by the robot
manipulation constraints. Nevertheless, the plate effect was shown to be negligible
during the first trials, undoubtedly owing to the coupling of each treated specimen
with a control specimen, and it is natural to think that the column effect, on the
horizontally maintained plate, is even more negligible. In other words, the excellent
reproducibility of the operations performed by the robot legitimately leads to the
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After sorting

Before sorting

S

0

10 3
11

10
11

1
2

12 3

12
13
14
15
16
17
18

13 3

14 3

3
3
0
0
1

15 3

16 3

17 4

18 4

19 4
20
21

1

19 4
20
21

2
3
3
0

22 4

22

23 4

2

23 4
24
25
26

24 4

25 5

26 5

27 5

3

27 4
28
29
30
31

28 5

2
2

29 5

30 5
31

4 0

3

32 5

32
33
34

33 0

34 0

35 0

1

35 4
36
37
38

1
2
2
3
3

36 0

37 0

38 0

39 0

2

39 4
40

40 0
41

41

42

42

43
44
45
46
47
48

43 4 3
44

45

46

47 4 0
48

Table 10: ROBOT1 design randomized, before and after sorting, writed by write nb.
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Before sorting After sorting

ind- ind-

pl col n-soil @g-soil Rough conc T-act rep pl col n-soil @-soil Rough conc T-act rep

6 4 2 2 2 2 2 2 6 4 2 2 2 2 2 2

1 4 2 curd 10mg 0.25 1% 15mn 1 1 0 0 St-Paul 100mg 0.73 1% 15mn 0
2 1 0 curd 10mg 0.25 3% 30mn 0 2 0 0 St-Paul 100mg 0.25 1% 15mn 1
3 4 0 St-Paul 10mg 0.25 1% 15mn 0 3 0 1 curd 10mg 0.73 1% 15mn 0
4 1 2 St-Paul 10mg 0.25 3% 30mn 1 4 0 1 curd 10mg 0.25 1% 15mn 1
5 4 3 curd 100mg  0.25 1% 15mn 1 5 0 2 St-Paul 10mg 0.25 1% 15mn 0
6 1 3 curd 100mg 0.25 3% 30mn 0 6 0 2 St-Paul 10mg 0.73 1% 15mn 1
7 4 1 St-Paul 100mg 0.25 1% 15mn 1 7 0 3 curd 100mg 0.25 1% 15mn 0
8 1 1 St-Paul 100mg 0.25 3% 30mn 0 8 0 3 curd 100mg 0.73 1% 15mn 1
9 4 2 curd 10mg 0.73 1% 15mn 0 9 1 0 curd 10mg 0.25 3% 30mn 0
10 1 0 curd 10mg 0.73 3% 30mn 1 10 1 0 curd 10mg 0.73 3% 30mn 1
11 4 0 St-Paul 10mg 0.73 1% 15mn 1 11 1 1 St-Paul 100mg 0.25 3% 30mn 0
12 1 2 St-Paul 10mg 0.73 3% 30mn 0 12 1 1 St-Paul 100mg 0.73 3% 30mn 1
13 4 3 curd 100mg 0.73 1% 15mn 0 13 1 2 St-Paul 10mg 0.73 3% 30mn 0
14 1 3 curd 100mg  0.73 3% 30mn 1 14 1 2 St-Paul 10mg 0.25 3% 30mn 1
15 4 1 St-Paul 100mg 0.73 1% 15mn 0 15 1 3 curd 100mg 0.25 3% 30mn 0
16 1 1 St-Paul 100mg  0.73 3% 30mn 1 16 1 3 curd 100mg  0.73 3% 30mn 1
17 0 1 curd 10mg 0.25 1% 15mn 1 17 2 0 St-Paul 100mg 0.25 1% 30mn 0
18 3 2 curd 10mg 0.25 3% 15mn 1 18 2 0 St-Paul 100mg 0.73 1% 30mn 1
19 2 1 curd 10mg 0.25 1% 30mn 1 19 2 1 curd 10mg 0.73 1% 30mn 0
20 5 2 curd 10mg 0.25 3% 30mn 1 20 2 1 curd 10mg 0.25 1% 30mn 1
21 0 2 St-Paul 10mg 0.25 1% 15mn 0 21 2 2 St-Paul 10mg 0.73 1% 30mn 0
22 3 3 St-Paul 10mg 0.25 3% 15mn 0 22 2 2 St-Paul 10mg 0.25 1% 30mn 1
23 2 2 St-Paul 10mg 0.25 1% 30mn 1 23 2 3 curd 100mg 0.73 1% 30mn 0
24 5 1 St-Paul 10mg 0.25 3% 30mn 0 24 2 3 curd 100mg 0.25 1% 30mn 1
25 0 3 curd 100mg  0.25 1% 15mn 0 25 3 0 curd 100mg  0.25 3% 15mn 0
26 3 0 curd 100mg  0.25 3% 15mn 0 26 3 0 curd 100mg  0.73 3% 15mn 1
27 2 3 curd 100mg 0.25 1% 30mn 1 27 3 1 St-Paul 100mg 0.25 3% 15mn 0
28 5 3 curd 100mg 0.25 3% 30mn 1 28 3 1 St-Paul 100mg 0.73 3% 15mn 1
29 0 0 St-Paul 100mg 0.25 1% 15mn 1 29 3 2 curd 10mg 0.73 3% 15mn 0
30 3 1 St-Paul 100mg 0.25 3% 15mn 0 30 3 2 curd 10mg 0.25 3% 15mn 1
31 2 0 St-Paul 100mg 0.25 1% 30mn 0 31 3 3 St-Paul 10mg 0.25 3% 15mn 0
32 5 0 St-Paul 100mg 0.25 3% 30mn 0 32 3 3 St-Paul 10mg 0.73 3% 15mn 1
33 0 1 curd 10mg 0.73 1% 15mn 0 33 4 0 St-Paul 10mg 0.25 1% 15mn 0
34 3 2 curd 10mg 0.73 3% 15mn 0 34 4 0 St-Paul 10mg 0.73 1% 15mn 1
35 2 1 curd 10mg 0.73 1% 30mn 0 35 4 1 St-Paul 100mg 0.73 1% 15mn 0
36 5 2 curd 10mg 0.73 3% 30mn 0 36 4 1 St-Paul 100mg 0.25 1% 15mn 1
37 0 2 St-Paul 10mg 0.73 1% 15mn 1 37 4 2 curd 10mg 0.73 1% 15mn 0
38 3 3 St-Paul 10mg 0.73 3% 15mn 1 38 4 2 curd 10mg 0.25 1% 15mn 1
39 2 2 St-Paul 10mg 0.73 1% 30mn 0 39 4 3 curd 100mg  0.73 1% 15mn 0
40 5 1 St-Paul 10mg 0.73 3% 30mn 1 40 4 3 curd 100mg 0.25 1% 15mn 1
41 0 3 curd 100mg 0.73 1% 15mn 1 41 5 0 St-Paul 100mg 0.25 3% 30mn 0
42 3 0 curd 100mg 0.73 3% 15mn 1 42 5 0 St-Paul 100mg 0.73 3% 30mn 1
43 2 3 curd 100mg  0.73 1% 30mn 0 43 5 1 St-Paul 10mg 0.25 3% 30mn 0
44 5 3 curd 100mg  0.73 3% 30mn 0 44 5 1 St-Paul 10mg 0.73 3% 30mn 1
45 0 0 St-Paul 100mg 0.73 1% 15mn 0 45 5 2 curd 10mg 0.73 3% 30mn 0
46 3 1 St-Paul 100mg 0.73 3% 15mn 1 46 5 2 curd 10mg 0.25 3% 30mn 1
47 2 0 St-Paul 100mg 0.73 1% 30mn 1 47 5 3 curd 100mg  0.73 3% 30mn 0
48 5 0 St-Paul 100mg 0.73 3% 30mn 1 48 5 3 curd 100mg 0.25 3% 30mn 1

Table 11: Randomized ROBOT1 design, before and after sorting. Writing by writing
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assumption that the variability between two different column units is similar to that
between the units of the same column. In these circumstances, it is permissible not
to take into account the column effect during the analysis.

3.2 Designs for a plate

With a view to implementing the designs described below, removable watertight partitions
are placed to separate either the columns or rows of the plate. Subsequently, treatments
may be adjusted from one column to the next, at each stage of the experiment.

Moreover, soiling takes place in two steps. At the end of each step, 8 specimens
actives are thus obtained together with the 8 associated control specimens. In the following
stages of the experiment, cleaning and disinfection, the 16 = 2 x 8 active specimens are
laid out simultaneously on the 16 parts of the plate.

With 16 units, it is possible to study up to five 2-level factors in resolution 5, and
up to 8 in resolution 4. For an intermediate number such as 6 or 7, it is impossible to
achieve a resolution better than 4. More specifically, if the model includes all the main
effects and interactions of two factors, it is impossible to estimate, in addition to the main
effects, even a single 2-factor interaction.

It might be inferred from this that it is always preferable to use 8 rather than 7 or
6 factors, but that is incorrect since the size of confounded sets of interactions increases
with the number of factors (table 12). And if the test relating to one of these sets is
significant, the interpretation is therefore more intricate if the number of factors is higher
(see [19] for an example of interpretation of this type of design).

basic factors defined factors
A B, C,D F=ABC, F=ABD,G=ACD, H= BCD

Confounding between interactions

wwith the 6 factors | with the 7 factors with the 8 factors

A B,C,D,E,F |AB,C,D,E,F,G| A, B,C,D,E,F,G, H
AB; CFE; DF AB; DF; CE AB; DF; GH; CFE
AC; BE AC; DG; BE AC; FH; DG; BE
BC; AFE BC; FG; AFE BC; DH; FG; AE
AD; BF AD; CG; BF AD; EH; CG; BF
BD; AF BD; AF; EG BD; EG; AF; CH
CD; EF CD; AG; EF CD; FEF; AG; BH
DE; CF BG; CF; DE BG; CF; AH; DE

Table 12: Designs of resolution 4 for 16 units and 6 to 8 factors

Furthermore, if certain interactions are assumed to be negligible, or if the estimation
of certain main effects which are already known is not required, it becomes possible to
estimate certain interactions. In this case, the number of factors in the design, 6, 7 or 8,
can have an essential impact.
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The above considerations reveal the type of set-up which can be sought to implement
when conducting the experiment with only one plate. In practice, it is necessary to take
into account the constraints imposed by robot manipulation. The two following examples
show that if the column and row effects are neglected, adaptation to constraints may be
achieved without any additional reduction of the number of factors studied.

3.2.1 Design of resolution 4 for 8 factors

In this example, the parameters to be entered into the program input, together with the
key matrix obtained in the output, appear in table 13. The format of this table does not
match that of the input screens, but rather the summary table that appears in the first
results output file or in the file obtained by option Content of .REG files in the general
menu (table 53).

In order to define this design, the plate is divided into two macro-columns of two
columns (factors coll, col2) and two macro-rows of two rows (rowl, row2) as indicated in

% [0]0]0] 0
L0000
. Jojojo o

Figure 6: Definition of block systems (coll, col2, rowl, row2)

In each macro-row, at the first soiling, the active specimens are laid out along one
of the rows (row2= 0) while the controls are laid out along the other (row2= 1). The roles
of the two rows are switched at the second soiling (row2= 0: controls, row2= 1: active
test specimens). In the subsequent stages, each of the active specimens is replaced in the
position occupied during soiling.

To facilitate manipulations, soiling is performed column by column and cleaning is
performed row by row. Soiling is thus prevented from differing within the same column.
The nature of the soiling (n-soil) and its bacterial concentration (c-bact) must thus be
identical for the two active specimens soiled simultaneously. Consequently, the levels
of these two factors are defined from the pseudofactor levels coll, col2, row2, which is
indicated in the first two rows of the hierarchy field.

Similarly, concentration (conc) and duration of action (7-act) of the cleaning prod-
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name

nb. of units

selection of basic factors
(which define the unit)
factor decomposition type
(into pseudofactors)
Backtrack search - limit. time
- max. nb. sol.

- random link

Inclusion of factors in

the ineligible set

Comment

ROBPL1R4.REG
16
user

maximum

10 mn

1
8765869
yes

One plate subjected to two soilings, resolution 4

Basic fact. Added factors Model parts
fac. lev. block | |fac. lev. lev. levels| | | Psoil+a-soil+c-bact+T-act
+conc+brush+rough+nat
nb. nb. type
Models
rowl 2 — n-soil 2 lit. curd 1 9
row2 2 < St-Paul 2 Z(c))‘l’; ;Il)éliow2+c011 rowl.row2
coll 2 +— g-soil 2 lit. 10mg T ] )
col2 2 « 100mg Part to be estimated
c-bact 2 lit. 3% | |4 D
. 6% 2 rough+nat
T-act 2 lit. 15mn
30mn Hierarchies
cone 2 it 1% |1 n-soil: coll col2 row?2
. 3% | |2 cbact: coll col2 row?
brush 2 lit. strong | |3 T_act: rowl row?2
weak | |4 cone: rowl row2
Rough 2 num. 0251 1 5 brush: rowl row2 coll
0.75
nat 2 num.
Definition of the design
key matrix defining relations
n-soil g-soil c-bact T-act conc brush rough nat | n-soil = col2
rowl 0 0 0 1 1 0 1 g-soil = coll
row2 0 0 1 0 1 1 1 0 c-bact = row2 col2
coll 0 1 0 0 0 1 1 1 T-act = rowl
col2 1 0 1 0 0 0 1 1 conc = rowl row2
brush = row2 coll
rough = rowl row2 coll col2
nat = rowl coll col2

Table 13: ROBPL1RA4 design for 1 plate, 8 treatment factors
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uct can only be modified on the same line. The levels of these factors are defined from
rowl and row?2, which is also indicated in the hierarchy field.

In this case, the possibility is recognized that the weight on the robot arm may be
changed in the middle of the column, to vary the quantity of soiling ¢-soil. Therefore, no
hierarchical constraint is required to be taken into account for this factor.

The intensity of brushing brush is equally modified by adding a weight on the robot
arm. To avoid too frequent changes, this modification is only authorized every two units,
that is to say, only in the middle and at the end of each row. In order to take this
constraint into account, the last row of the hierarchy field is introduced which makes the
level of brush dependent on the row (rowl, row2) and the macro-column (coll).

The main query made is defined by the pair model—part to be estimated number
1. Development of the term p.p in model 1 provides all the main effects and interactions
between two of the 8 treatment factors. The part to be estimated (p) in the framework of
this model contains all the main effects. The resulting design, provided by its key matrix
and its defining relations at the bottom of table 13, is thus of resolution 4. Moreover, the
inclusion, in model 1, of factor row2 relating to the soiling number provides the possibility,
even in the presence of an additive soiling effect, of ensuring that all the main treatment
effects are estimable.

In contrast, the other column or row factors coll, col2, rowl are not taken into
account in this model 1, for the simple reason that the hierarchical constraints do not
enable this. Thus if the model includes the term rowi.row2, there can be no solution since
T-act and conc are constant in each row.

In the framework of a model including row and column effects, it is thus impossible
to estimate all the main effects. Nevertheless, it can be ensured that some of these
effects are estimable. For instance in this example, by adding the pair model—part to be
estimated number 2, it can be ensured that the main effects roughness and nature of the
material making up the specimen (rough, nat) are estimable, even if the model includes, in
addition to the row and column effects, the interactions columnx soiling (coll.col2.row2)
and macrocolumnxrow (coll.rowl.row2). In the resulting set-up, two active specimens
located in the same half-row differ both in terms of roughness and nature, and this also
applies to two active specimens that are soiled simultaneously in the same column.

Randomization of the design must of course be consistent with the row and column
structure, but also the macro-column and macro-row structure, to avoid inappropriate
weight changes on the robot arm, during soiling or cleaning. Ad-hoc randomization is
achieved by using coll+coll.col2+rowl+rowl.row2 as the randomization model. This
formula indicates that randomization is defined by:

e a random permutation of the macro-columns (col1),
e a random permutation of the macro-rows (rowl),

e for each of the macro-columns, a random permutation of the columns of which it
consists (col2 for coll fixed),

29



ouTPUT

Class 0, pseudofactors col1

]0)=, associated pseudofactors:

fonction fi :
1 0

Class 1, pseudofactors rowl

|1)=, associated pseudofactors:

fonction fi :
1 0

Class 2, pseudofactors col2

COMMENT

Randomization of macro-columns

No nesting pseudofactors

permutation : 0 — 1,1+ 0

Randomization of macro-rows

No nesting pseudofactors

permutation : 0 — 1,1+ 0

randomization of columns

2)=0 , associated pseudofactors: coll in each macro-column

function fi : permutation
0 0 1 macro-column 0: 0+—0, 1+—1
1 1 0 macro-column1: 0—1, 1—0

Class 3, pseudofactors row2 randomization of rows

13)=1, associated pseudofactors: rowl in each macro-row

function fi : permutation
0 0 1 macro-row 0: 0—0, 1~—1
1 0 1 macro-row 1: 0—0, 1+—1

Table 14: Randomization of the ROBPL1R4.PS design (intermediate outputs)

e for each of the macro-rows, a random permutation of the two rows of which it
consists (row2 for row1 fixed).

Random column permutations are conducted independently in the two macro-columns.
Likewise, row permutations are conducted independently in the two macro-rows. An ex-
planation of the chosen permutations can be obtained (table 14) by requesting the in-
termediate outputs in screen 5 (fig. 9) through option initialisation in the general menu.

What purpose does this randomization serve? Past experiments seem to show that
the use of controls makes the effect position of the test specimen on the plate negligible.
There is, however, no certainty that this is always the case and prudence demands that
the systematic use of the very regular design obtained prior to randomization be avoided.

In principle, the theoretical study of this type of randomization leads to selecting a
statistical analysis model which includes all the block effects satisfying hierarchies, that
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model : coll.col2.rowl.row2+p.p

[ row2 ]; n-soil c-bact ; rough nat ; g-soil brush ; T-act conc ;

[ col2 ]; n-soil ;

[ row2 col2 ]; c-bact ;

[ rowl ]; T-act ;

[ rowl row2 ]; conc ;

[ rowl col2 ]; g-soil nat ; n-soil T-act ; brush rough ; c-bact conc ;

[ rowl row2 col2 |; g-soil rough ; c-bact T-act ; brush nat ; n-soil conc ;
[ coll ]; g-soil ;

[ row2 coll ]; brush ;

[ coll col2 ]; n-soil g-soil ; T-act nat ; c-bact brush ; conc rough ;

[ row2 coll col2 ]; g-soil c-bact ; T-act rough ; n-soil brush ; conc nat ;
[ rowl coll ]; n-soil nat ; c-bact rough ; g-soil T-act ; conc brush ;

[ rowl row2 coll |; c-bact nat ; n-soil rough ; T-act brush ; g-soil conc ;
[ rowl coll col2 ]; nat ;

[ rowl row2 coll col2 ]; rough ;

Table 15: Set of aliased effects in design ROBPL1R4

is to say, that never dissociate column col2 from macro-column coll and, similarly, row
row2 from macro-row rowl. The terms of this model:

coll; rowl; rowl.coll; col2.coll; col2.coll.rowl; row2.rowl; row2.rowl.coll; row2.rowl.col2.coll

are the ancestral terms. The program automatically infers these from the randomization
model and lists them in the randomization module output file. Randomization makes
these block effects random and, to be entirely accurate, the analysis must take this into
account to test each treatment effect in the appropriate “strata”.

In this example, each block effect is confounded with one or several treatment effects,
such as indicated in table 15, a table obtained through the study of aliases with model
coll.col2.rowl.row2+p.p. 1t is therefore out of the question to perform the analysis by
the decomposition into strata mentioned above. For the purpose of the analysis, we have
to rely on the assumption that there is no effect of position on the plate. Neither are
there, in fact, any residual degrees of freedom which enable estimation of error variance.
Therefore, the analysis relies on the assumption that some of the linear combinations of
treatment effects appearing in table 15 are equal to zero, and the others must be detected
by a procedure such as those described in [17] or [19].

3.2.2 Resolution 5 design for 5 factors

Table 16 describes the input parameters required for a design of resolution 5 for 5 factors.
The factor intensity of brushing is not studied in this design, therefore, it is unnecessary
to decompose the columns into two macro-columns as in the previous example.

The main query is defined here by the pair model—part to be estimated 1, which
indicates that all the terms in model p.p are sought to be estimated, including the main
effects and interactions of two factors.

It is impossible to estimate the 16 parameters of p.p in a model that also includes
a block effect such as soiling effect row2. In contrast, as in the previous example, it is
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possible to ensure that all the main effects are estimable in a model including soiling effect
(row2) and that roughness is also estimable within columns, that is to say, in the presence
of a term col in the model. The latter two constraints relate to the pairs model—part to
be estimated 2 and 3. The substitution of col.row2 for col in pair 3 would produce the
following diagnosis, which proves that it is not possible to impose the same constraint on
roughness as in the previous example:

FAILURE OF THE BACKTRACK SEARCH
Search terminated at factor rough
Order of introduction of pseudofactors

rowl row2 col_1 col_2 n-soil c-bact T-act conc rough
2 2 2 2 2 2 2 2 2
*

The solution obtained is entered at the bottom of table 16 and table 17 speci-
fies confounding with block effects obtained through the study of aliases with model
col.rowl.row2+p.p. There are no degrees of freedom to estimate residual variance, there-
fore statistical analysis must be based on a method of detecting influencing effects similar
to that in the previous example.

3.3 Designs for two plates

We know that with 32 units, it is possible to study up to six 2-level factors in resolution
5 and up to 16 in resolution 4.

If one of the studied factors is qualitative with 4 levels, as the others still have 2
levels, the situation is quite different. For a resolution of 5, there may be up to four 2-level
factors in addition to the 4-level factor. For a resolution of 4, up to seven 2-level factors
can be introduced.

A maximum of 7 is easily obtained by the search defined in table 18. The result of this search reveals
the impossibility of going beyond the 7th factor.

This search introduces, as basic factors, factor A with 4 levels and three other factors with 2
levels. It may be proved simply that this choice is not restrictive by using the following result: if
factors cannot be chosen as basic factors, a defining relation exists between them. Thus if neither
of the two sets {4, B, C, D}, {A, B, C, E} can be used as a basic set, two relations of the form
A‘ng BCD =1, AJASBCE = 1 may be formed. Nevertheless, multiplying these relations gives rise
to a relation between the three factors A, D, E which cannot exist in resolution 4.

In resolution 5, the fact that it is impossible to go beyond four 2-level factors more simply
results from an elementary calculation of the number of degrees of freedom. With five 2-level factors,
not only would the constant have to be estimated, but also the 3 + 5 parameters associated with the
main effects and the 3 x5+5 x4/2 = 25 parameters associated with the interactions, thus amounting
to a total of 34 parameters, which exceeds the number of experimental units.
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name : ROBPL1R5.REG
nb. of units : 16
Selection of basic factors :  user
(which define the unit)
factor decomposition type :  maximum
(into pseudofactors)
Backtrack search - time limit : 10 mn
- max. nb. sol. 01
- random link 1 876986
Inclusion of factors in : yes
the ineligible set
Comment
1 plate with two soilings, resolution 5

Basic factors Factors to be defined Model parts
1 p:n-soil+-c- - h
fac. nb. b fac. nb. type niveaux pin-soil+c-bact+T-act +conc+roug
niv. 1 niv. niv. Models
1 p.
rowl 2 <« n-soil 2 lit. curd 2 ?OSVZ
row2 2 <« St-Paul 3 col
col 4 c-bact 2 lit. 3%
6% Parts to be estimated
T-act 2 lit. 15mn
1
30mn 2 gp
conc 2 lit. 1%
3 rough
3% &
rough 2 num. 0.25 Hierarchies
0.75] 11 n-soil: row2 col
2 c-bact: row2 col
3 T-act: rowl row2
4 conc : rowl row2
Definition of the design
key matrix defining relations
n-soil c-bact T-act conc rough | n-soil = row2 col; cols
rowl O 0 1 1 0 c-bact = row2 coly
row2 1 1 1 0 1 T-act = rowl row2
coly 1 1 0 0 0 conc = rowl
coly 1 0 0 0 1 rough = row2 col,

Table 16: ROBPL1R5 design for 1 plate, 5 treatment factors

The indexed pseudofactors (coly, colz) are those which result from the automatic decomposition of a factor and are
noted with _ in the program.
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model : col.rowl.row2 + p.p

[ coly |; n-soil rough ;

[ row2 ]; T-act conc ;

[ row2 col; ]; c-bact ;

[ coly |; n-soil c-bact ;

[ coly cols ]; c-bact rough ;

[ row2 coly ]; rough ;

[ row2 col; colz ]; n-soil ;

[ rowl ]; conc ;

[ rowl col; ]; c-bact T-act ;

[ rowl row2 ]; T-act ;

[ rowl row2 col; ]; c-bact conc ;
[ rowl coly ]; T-act rough ;

[ rowl col; colz ]; n-soil T-act ;
[ rowl row2 coly ]; conc rough ;
[ rowl row2 coly cols ]; n-soil conc ;

Table 17: Confounding with the block effects in ROBPL1R5

name : TRIAL
nb. of units 32
Selection of basic factors :user
(which define the unit)

factor decomposition type :  maximum
(into pseudofactors)

Backtrack search - time limit : 10 mn
- max. nb. sol. 1

- random link : 0
Inclusion of factors in : yes

the ineligible set

Basic factors Added factors Model parts
1 P:A+B+C+D+E+F+G+H+I+J+K+L
fac. nb. fac. nb.
niv. niv. Models

A 4 E 5 1 PP
B 2 F 2 Part to be estimated
D 2 H 2

I 2

J 2

K 2

L 2

FAILURE OF THE BACKTRACK SEARCH
Search terminated at factor I

Order of introduction of pseudofactors :
Al A2BCDEFGHIJKL

2 2 22222222222

*

Table 18: Search for the maximum number of factors in a size 32 fraction of a 4 x 2™
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If the only 4-level factor is quantitative, the situation is different yet. In this case,
for the purpose of the analysis we will refer to [17], [7] and to paragraph 4 relating to
designs for combinations of 2- and 4-level factors.

In the case of the robot, the following examples illustrate the above cases.

3.3.1 Resolution 5 fraction 2°/2

Table 19 provides the input parameters for such a design and the solution in the form of
a key matrix.

Estimation of the plate effect is required (pair model — part to be estimated 1).
It is also ensured that all the main effects are estimable, including in the presence of a
soiling effect (pair 2) and that roughness varies within columns when both specimens are
soiled simultaneously (pair 3). Hierarchical constraints are similar in nature to those in
the designs for a plate.

The obtained design thus permits estimation of the constant, the plate effect, the
6 main effects and 15 two-factor interactions, on the assumption that there are no in-
teractions of three factors or more. For the estimation of residual variance, it leaves
9=232—(14+1+ 6+ 15) degrees of freedom, which correspond to the unaliased block
effects different from pl in table 20 obtained through the study of aliases for model
pl.col.rowl.row2 + p.p.

3.3.2 A 28/8 fraction of resolution 4

Table 21 provides the parameters of the search. Twenty different solutions are required
with a non-zero random link. In this case, the program restarts for each search by ran-
domly reordering the set of possible choices for each column of the key matrix to be
defined. Clearly different results may thus be obtained without conducting an exhaustive
search.

In order to compare solutions, the option study of aliases in the general menu is
used with model p.p. Table 22 provides the outputs for solutions 3, 7, 9. These outputs
in fact illustrate the three types of results obtained through the study of aliases for the
twenty solutions.

The first kind of solution represented by solution 3 provides 7 sets of aliased treat-
ment effects, one of which consists of 3 two-factor interactions and the other 6 consisting
of only two interactions. It therefore leads to 15 aliased interactions and 13 = C% — 15
unaliased interactions. This type of design thus enables (orthogonal) estimation of 8 main
effects, 13 isolated interactions and 7 linear combinations of interactions. The presence
of pl in part 1 to be estimated also makes it possible to ensure that the plate effect is
estimable. Following estimation of these 29 = 8 + 13 4+ 7 + 1 effects and of the constant,
only 2 = 32 — 30 degrees of freedom remain to estimate residual variance — degrees of
freedom which correspond to the two unaliased block effects different from pl obtained by
analysis of aliases in model pl.coll.col2.rowl.row2 + p.p (bottom of table 22). This low
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name
nb. of units

Selection of basic factors

(which define the unit)

factor decomposition type

(into pseudofactors)

Backtrack search - time limit

- max. nb. sol.

- random link
Inclusion of factors in
the ineligible set

Two plates subjected to soiling in two steps, resolution 5

Comment

ROBPL2R5
32

user
maximum

10 mn
1
8765869

oul

Basic factors Added factors Model parts
fac. lev. block fac. lov. 1 p:n-soil+q-soil+c-bact+T-act+conc+rough
nb. nb. Models
1 pl4+p.
pl 2« | [nsoil 2| |5 PIBD
. pl.row2
rowl 2 — g-soil 2 3 pl.col.row?
row2 2 @« c-bact 2 e
col 4« T-act 2 Part to be estimated
rongh 3 [LPIEPP
g 2 p
3 rough
Hierarchies
1 n-soil: col row2
2 c-bact: col row2
3 T-act: rowl row2
4 conc : rowl row2
Design definition
key matrix and defining relations
n-soil g-soil c-bact T-act conc rough | n-soil = row2 cols
pl 0 1 0 0 0 1 g-soil = pl rowl row?2 coly
rowl O 1 0 1 1 1 c-bact = row2 coly
row2 1 1 1 1 0 1 T-act = rowl row2
coly 0 0 1 0 0 1 conc = rowl
coly 1 1 0 0 0 1 rough = pl rowl row2 col; coly

Table 19: Design ROBPL2R5 for 2 plates, 6 treatment factors
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[ col; ]; g-soil rough ;

[ coly coly ]; n-soil c-bact ;

[ row2 ]; T-act conc ;

[ row2 col; ]; c-bact ;

[ row2 cols ]; n-soil ;

[ pl coly |; g-soil T-act ;

[ pl coly coly |; T-act rough ;

[ pl row2 cols |; g-soil conc ;

[ pl row2 coly coly ]; conc rough ;
[ rowl ]; conc ;

[ rowl col; ]; c-bact T-act ;

[ rowl colz ]; n-soil T-act ;

[ rowl row?2 ]; T-act ;

[ rowl row2 col; ]; c-bact conc ;
[ rowl row?2 cols ]; n-soil conc ;

[ pl rowl coly |; c-bact rough ;

[ pl rowl coly colz ]; g-soil c-bact ;
[ pl rowl ]; n-soil g-soil ;

[ pl rowl coly ]; n-soil rough ;

[ pl rowl row2 coly |; g-soil ;

[ pl rowl row2 coly coly ]; rough ;

list of unaliased block effects
coly ; row2 coly cols ; pl ; pl coly ; pl row2 ;
> pl row2 col; ; rowl coly coly ; rowl row2 coly cols ;
> pl rowl row?2 ; pl rowl row?2 col; ;

Table 20: Aliasing with block effects in ROBPL2R5

The sign > indicates a continuation of the same row.
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name ROBPL2R4
nb. of units 32
Selection of basic factors user
(which define the unit)
factor decomposition type maximum
(into pseudofactors)
Backtrack search - time limit 10 mn
- max. nb. sol. 20
- random link 208877454
Inclusion of factors in oui
the ineligible set

Comment
2 plates subjected to soiling in two steps, 8 factors, resolution 4

Basic factors Added factors Model parts
1 p:m-soil+q-soil+c-bact+T-act
fac. lev. block| |fac. lev. +conc-+brush-+rough-+nat
nb. nb.
Models
pl 2 — n-soil 2 1 ol
rowl 2« g-soil 2| | p+P-p
pl.row2
row2 2. c-bact 2 3 pl.coll.col2.row?2
coll 2 « T-act 2 pLeotL.cos
col2 2« conc 2 Part to be estimated
brush 2 1 pl+p
rough 2| |9 p
nat 2 3 rough+nat
Hierarchies
1 n-soil: pl coll col2 row2
2 c-bact: pl coll col2 row2
3 T-act: pl rowl row?2
4 conc : pl rowl row2
5 brush: pl rowl row2 coll
Design definition
key matrix defining relations
n-soil g-soil c-bact T-act conc brush rough nat | n-soil = col2
pl 0 0 0 1 0 0 1 1 | g-s0il = rowl coll
rowl O 1 0 1 1 1 1 1 | c-bact = row2 coll col2
row2 0 0 1 0 1 1 1 0 | T-act = plrowl
coll 0 1 1 0 0 1 0 1 | conc = rowl row2
col2 1 0 1 0 0 0 1 1 | brush = rowl row2 coll
rough = pl rowl row2 col2
nat = pl rowl coll col2
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Set of aliased treatment effects

Solution 3, Random link : 798251298

rough nat ; n-soil c-bact ; g-soil conc ;
conc rough ; g-soil nat ;
conc nat ; g-soil rough ;
c-bact conc ; n-soil g-soil ;
n-soil conc ; g-soil c-bact ;
n-soil nat ; c-bact rough ;
n-soil rough ; c-bact nat ;

Solution 7, Random link : 539794919

g-soil rough ; T-act nat ; conc brush ;
n-soil c-bact ; T-act rough ; g-soil nat ;
g-soil T-act ; rough nat ;
conc rough ; g-soil brush ;
g-soil conc ; brush rough ;
T-act conc ; brush nat ;
conc nat ; T-act brush ;
g-soil c-bact ; n-soil nat ;
c-bact rough ; n-soil T-act ;
n-soil g-soil ; c-bact nat ;
n-soil rough ; c-bact T-act ;

Solution 9, Random link : 1636010972

brush nat ; n-soil T-act ; g-soil c-bact ;
g-soil nat ; c-bact brush ; T-act conc ;
g-soil brush ; c-bact nat ; n-soil conc ;
g-soil T-act ; n-soil c-bact ; conc nat ;
n-soil g-soil ; c-bact T-act ; conc brush ;
n-soil brush ; T-act nat ; g-soil conc ;
n-soil nat ; T-act brush ; c-bact conc ;

Treat

ment effects unaliased with other treatment effects

Solution 3

n-soil ; conc brush ; T-act nat ;
>c-bact ; g-soil brush ; T-act rough ;
>q-soil T-act ; brush rough ; conc ;
>brush nat ; T-act brush ; T-act;
>q-soil ; brush ; n-soil brush ;
>T-act conc ; c-bact brush ; nat ;
>n-soil T-act ; rough ; c-bact T-act ;

Solution 7

c-bact ; n-soil ; rough ; g-soil ;
>T-act ; nat ; c-bact brush ;
>conc ; brush ; c-bact conc ;
>n-soil brush ; n-soil conc ;

Solution 9

n-soil ; T-act ; T-act rough ;

>n-soil rough ; rough ; conc rough ; conc ;
>c-bact ; g-soil ; g-soil rough ;

>c-bact rough ; rough nat ; brush rough ;
>brush ; nat ;

Block effects unaliased with a treatment effect

Solution 3

pl ; rowl ; pl rowl row2 coll ;

Solution 7

row2 ; pl row2 col2 ; col2 ;

>row2 coll col2 ; pl ;

>pl row2 coll ; pl rowl row2 col2 ;
>pl rowl coll col2 ;

Solution 9

row2 ; pl ; pl rowl ;

>pl rowl col2 ; pl row2 col2 ;
>row?2 coll col2 ; rowl row2 coll ;
>pl coll col2 ; pl rowl coll ;

Table 22: Aliasing in three typical resolution 4 solutions for a 28/8
The sign > indicates a continuation of the same row.
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number of degrees of freedom makes it necessary either to combine this estimation with
a previously obtained estimation or to use a procedure which detects influencing factors
such as that mentioned earlier.

The second kind of solution represented by solution 7 provides 11 sets of aliased
treatment effects including two sets of 3 interactions and 9 sets of two interactions, that
is to say, 24 aliased and 4 unaliased interactions. It thus allows to estimate the constant,
the plate effect, the 8 main effects, 4 isolated interactions, 11 linear combinations of
interactions and leaves 7 =32 — (1 4+ 1+ 8 + 4 + 11) degrees of freedom to estimate the
residual variance. These 7 degrees of freedom correspond to the unaliased block effects
different from pl obtained by analysis of aliases in model pl.coll.col2.rowl.row2 + p.p
(bottom of table 22).

Finally, the third kind of solution represented by solution 9 enables the estimation
of 7 isolated interactions, 7 linear combinations of three interactions and leaves 8 degrees
of freedom to estimate residual variance.

The first type of design makes it possible to estimate more interactions and is there-
fore preferable to the other two types of design, except probably in cases in which many
effects are expected to be significant and in which the experiment is intended to provide
a correct estimator of residual variance.

The specific choice of design within the first type of design is unimportant if the
same importance is attached a priori to all two-factor interactions. For the purpose of the
example, we selected solution 3, which corresponds to random link 798251298, whose key
matrix and defining relations are provided at the bottom of table 21. The construction of
the corresponding design is obtained by option Construction from a previously obtained
key matriz in the general menu, in which the number of the selected solution is specified.
This isolated solution may also be obtained again by conducting a search for only one
solution with random link 798251298.

3.3.3 Fraction 4 x 2¢/2 of resolution 5

Table 23 provides the input parameters to obtain such a design and the solution obtained.
The model contains the constant, the pl effect, the three parameters of the main effect
of the 4-level qualitative effect n-soil, the 4 main effects of 2-level factors and their 6
interactions, the 12 interaction parameters between factor n-soil and each of the other 4
factors. It thus contains a total of 27 =1+ 14+ 3 + 4 + 6 + 12 parameters and leaves
5 = 32 — 27 degrees of freedom to estimate the error variance. These degrees of freedom
correspond to the unaliased block effects different from pl appearing at the bottom of
table 23. They were obtained by analysis of aliases in model pl.col.row1.row2 + p.p.

3.3.4 Design 4 x 27/16 of resolution 4

Before examining the adaptation of such a design to the robot, a search may be performed
to find out which types of design of this form may be obtained. The analysis of aliases for
the 20 solutions obtained by the search defined in table 24 reveals a single alias structure
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name : ROP2F4R5

nb. of units i 32
Selection of basic factors :  user
(which define the unit)

factor decomposition type :  maximum
(into pseudofactors)

Backtrack search - time limit : 10 mn

- max. nb. sol. 01

- random link 1 6794539
Inclusion of factors in : oul

the ineligible set

Comment

Two plates subjected to soiling in two steps, resolution 5

1 qualitative factor with 4 levels, 4 factors with 2 levels

Basic factors Added factors Model parts
fac. b, b fac. lov. 1 p:n-soil+c-bact+T-act+conc+rough
niv. 1 nb. Models
1 pl+p.

pl 2 4| |n-soil 4 9 gl-:)w%
rowl 2 < | |c-bact 2 )
row2 2 <« | |T-act 2 Part to be estimated
col 4 «+ conc 2l |4 pl4p p

rough 2] |9 c-bact+T-act+conc+rough

Hierarchies

1 n-soil: pl col row2

2 c-bact: pl col row2

3 T-act: pl rowl row2

4 conc : pl rowl row2

Design definition
key matrix and defining relations
n-soil; n-soily c-bact T-act conc rough | n-soil; = coly

pl 0 0 1 1 0 0 n-soily = row2 coly
rowl 0 0 0 1 1 0 c-bact = pl col; coly
row2 0 1 0 0 1 1 T-act = plrowl
coly 1 1 1 0 0 0 conc = rowl row2
cols 0 0 1 0 0 1 rough = row?2 col

list of unaliased block effects

pl ; pl coly ; pl rowl cols ; pl rowl col; cols ; rowl row2 coly ; rowl row2 coly cols ;

Table 23: Design ROP2F4R5 for 2 plates, a 4 x 2*/2 of resolution 5
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and suggests that, allowing for a possible permutation of the 2-level factors and also of
the three pseudofactors A;, Ay, A;A,, there is only one solution. Table 25 specifies the
confounding for one of the solutions. It shows 18 unaliased effects and 13 sets of aliased
interactions. Such a set-up does not leave any residual degree of freedom and does not
enable estimation of a potential additional block effect.

name : ESSAIl
nb. of units 32
Selection of basic factors : user
(which define the unit)

factor decomposition type :  maximum
(into pseudofactors)

Backtrack search - time limit : 10 mn
- max. nb. sol. 20

- random link 1 456934
Inclusion of factors in : yes

the ineligible set

Basic factors Added factors Model parts
1 P:A+B+C+D+E+F+G+H

fac. lev. fac. lev.

nb. nb. Models
A 4 E 9 1 PP
B 2 F 2 Part to be estimated
C 2 G 2 1P
D 2 H 2

Table 24: Search for several different 4 x 27/16

Table 26 defines this type of design for the robot. Since it is impossible to estimate
pl, it is precluded from being included in the part to be estimated.
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Solution 4, Random link : 208449859

detailed list of sets of aliased effects in the model

AiB;EF;
AlAQB;DH;CG;
AL C;EH;
At AbC;DF;BG;
BC;FH;A Ay G;
DE;AlG;
AlD;EG;

A A D;BH;CF;
BD;FG;AlAQH;
A TH;CE;
CD;GH; A Ay F
AiF;BE;
CH;BF; A1 E;DG;

list of unaliased effects

;A1 A2 AL A B3 ABC5AC5A2G5 G
>D:;A;D; A H;H; Ay F;F; A E; A; Ay, B E;

Table 25: Alias structure in a 4 x 27/16 of resolution 4
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name : ROP2F4R4

nb. of units 32
definition of the basic factors : wuser
(which define the unit)

factor decomposition type :  maximum
(into pseudofactors)

Backtrack search - time limit : 10 mn

- max. nb. sol. |

- random link 1 777754354
Inclusion of factors in the : yes

ineligible set

Commentaire

Two plates subjected to soiling in two steps, resolution 4

One 4-level qualitative factor, seven 2-level factors

Basic factors Added factors Model parts
1 pm-soil+q-soil+c-bact+T-act
fac. lev. block fac. lev. +conc+brush+rough-+nat
nb. nb.
Models
pl 2 — n-soil 4 1 ol
rowl 2 ¢« g-soil 2 PHP-P
row2 2 c-bact 2 Parts to be estimated
coll 2 — T-act 2| |4 p
col2 2 — conc 2
brush 2 Hierarchies
rough 2| 11 n-soil: pl coll col2 row?2
nat 2] |2 c-bact: pl coll col2 row2
3 T-act: pl rowl row2
4 conc : pl rowl row2
5 brush: pl rowl row2 coll

Design definition

key matrix defining relations
n-soil; n-soils g-soil c-bact T-act conc brush rough nat | n-soily = pl row2 coll col2

pl 1 0 0 0 0 1 0 1 1 | n-soily = coll col2

rowl 0 0 1 0 1 1 1 0 0 | g-soil = rowl coll

row2 1 0 0 1 1 1 1 0 1 | c-bact = row2 coll col2

coll 1 1 1 1 0 0 1 0 0 | T-act = rowl row2

col2 1 1 0 1 0 0 0 1 1 | conc = plrowl row2
brush = rowl row2 coll
rough = pl col2
nat = pl row2 col2

list of unaliased block effects
pl ; pl coly ; pl rowl cols ; pl rowl col; cols ; rowl row2 coly ; rowl row2 coly cols ;

Table 26: Design ROP2F4R4 for 2 plates, a 4 x 28/32 of resolution 4
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4 Design for a combination of 2 and 4-level factors

4.1 Qualitative factors
4.1.1 Example

In a study on the effectiveness of cleaning and disinfection of surfaces, 16 factors likely to
act were initially identified, including four important qualitative factors which are sought
to be studied according to more than two modalities, such as the type of disinfection
product.

Experiments aimed at comparing different treatments are conducted on samples of
surfaces treated in blocks of 8. Factor cleaning temperature T, studied on 2 levels 4° et
20°, is necessarily constant for each block.

In order to determine the most influential factors, 64 treatments corresponding to 8
blocks may be tested as a first step. With a view to minimizing the number of trials, it
is decided to study only two levels for factors other than the four already mentioned. As
regards the latter, four levels are selected rather than three. This enables a broader range
of treatments to be covered, and substantially increases possibilities of creating design
fractions.

Initially, the blocks are ignored. The maximum number of 2-level factors which may
be added to the four 4-level factors whilst limiting the resolution to 3 or 4 is sought,
because resolution 5 is unattainable with these four 4-level factors.

There necessarily are defining relations linking these four factors because the size 64 design can only
contain a fraction of these 256 = 4* combinations of levels of these four factors.

Within seconds, an initial search for a design of resolution 4 finds relations which
make it possible to define 4 two-level factors F, F', G, H in addition to the four 4-level
factors A, B, C, D. The search for a 5th factor I has still not been completed after 5 mn
and is abandoned (tab. 27).

Two possibilities arise for further study of factors : reducing the number of 4-level
factors or limiting the resolution to 3.

4.1.2 Resolution 4 designs

A design of resolution 4 is a design in which all the main effects are estimable in a
model which includes, alongside the constant and the main effects, all the two-factor
interactions. Through suitable reparametrization, such as for instance that described in
[21], the following result is easily demonstrated, in which X is the linear model matrix.

Proposition 4.1 In a design of resolution 4, the columns X associated with the constant,
the main effects and the interactions between a fized factor and each of the other factors
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are independent.

This result was demonstrated by Margolin [22] by using the reparametrization associated
with orthogonal polynomials. It provides a lower bound to the number NV of units enabling
the construction of a design of resolution 4 with predetermined factors: /N must be greater
than the number of independent columns provided by the proposal.

Thus in the case at hand, if there are ny four-level factors, no two-level factors, the
number of columns associated with the main effects is noy + 3n4. If the determined factor
has 4 levels, the number of columns associated with the interactions between this factor
and each of the ny + ny — 1 others is 3(ny + 3(ng — 1)). We should thus have

N21+n2+3n4+3(n2+3(n4—1))

When N and n4 are fixed, this formula provides the following upper bound for the number
no of two-level factors introducible in resolution 4 :

N
np < —3ma+2. (6)

In cases {ny = 1, N = 16k} and {ns, = 2, N = 32k}, it is known how to construct
designs of resolution 4 with this maximum number of ny factors with 2 levels [22], [1].
These constructions, based on the Hadamard matrices, do not guarantee regularity and,
consequently, simplicity of confounding between two-factor interactions, but they enable

the development of designs with a number of units which is not a power of 2 (for instance
ny=1and N =48, or ny =2, N = 96).

In contrast, for ny = 3, there is no known comparable general method and only one
algorithm such as that of PLANOR enables the development of orthogonal designs with
a substantial number of two-level factors.

The results obtained by PLANOR with N = 64 and n4 included between 1 and 4
and N = 32 are summarized in table 27. This table specifies the basic factors used in
each search.

The choices made for these basic factors are not restrictive. This is clear when the basic factors are
the four-level factors A, B, C' because in resolution 4 there cannot be any defining relation linking
these three factors. When there are only two 4-level factors A and B, it is certainly possible to add
C to them. Resolution 4 precludes any defining relation between these three factors and as a result
the 32 combinations of their levels appear. If another 2-level factor could not be added to them, all
the other factors would subsequently be defined from A, B, C, and the design would consist of two
replications of the same 32 treatments, which must be avoided. Similar reasoning applies in cases in
which there is only one 4-level factor.

The maximum number of 2-level factors given in this table 27 is to be compared
with the upper bounds from (6) which are specified for ny included between 1 and 6 in
table 28.

The maximum number of 2-level factors obtained within a reasonable time frame is
slightly below the maximum provided in table 28 when ny = 4 or ny = 3. It is equal to
this maximum in cases ny = 2 and ny = 1.
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nb. of units 64
Selection of basic factors : user
factor decomposition type : maximum

Model parts

PM:A+B+C+D+FE+F+G+H+I1+J+K+L+M+N+O+P+Q

Model Part to be estimated
PM.PM PM
nb. of 4-lev. | maximum nb. basic factors added factors after
factors of 2-lev. a 5 mn search

factors
4 4 A1 As By By C; Cy D1D2EFGH£JKLMNOPQ
3 7 A, Ay By By C; Cy DEFGHIJIELMNOPQ
2 12 A A, By B, C D EFGHIJKLMNQPQ
1 15 A1 Ao BCDFE

FGHIJKLMNOPQ

Table 27: Resolution 4 designs for a mixture of 4 and 2 levels qualitative factors

The asterisk indicates the factor which the program was attempting to define after searching for
5 mn. In general, this factor is obtained in a fraction of a minute. The number appearing in
the second column is the number of 2-level factors on the left-hand side of *, that is to say the
maximum number which may be defined within a reasonable time frame

Ty 1 2
no max 15 12

5 6
3 0

4
6
6

Table 28: Margolin upper bound for ns in a size 64 resolution 4 fraction of a 4™42">

47




Resolution 4 provides correct estimates of the main effects, including in the presence
of interactions. It therefore makes it possible to draw generally quite reliable conclusions.
However, table 27 shows that obtaining this resolution requires substantially restricting
the targets initially set with regard to the number of factors studied.

4.1.3 Resolution 3 designs giving a resolution 4 by foldover

If the existence of a small number of really active factors is suspected without further
specific indications, a good strategy can be to increase the number of factors studied by
reducing the resolution to 3.

The maximum number of 2-level factors which may be added to the 4-level factors in resolution 3
is easy to find. The requirement is not to have a defining relation that links only two factors. For
instance, if A, B, C, D are the four-level factors, E, F, ... the two-level factors, there should be
no relations such as By = A1 Ay, E = AjAs, E = F. In other words, the elements A, Az, A1 As,
Bl, Bz, BlBQ, Cl, Cz, C’ng, Dl, DQ, D1D2, E, F, ... must all be different. With 64 units, there
are at most 63 different non-zero elements formed from the basic factors. Therfore, once the 4-level
factors are determined, there remain 51 = 63 — 12 elements which may be used to define the 2-level
factors. More generally, when s4 is the number of 4-level factors, the maximum number of 2-level
factors which may be added is s = 63 — 3 X s4.

Moreover, the theory gives the maximum number s4 of 4-level factors which may be introduced
beforehand: 21 = 63/3 (number of vectorial subspaces of dimension 1 in the vectorial space F; of
dimension 3 on the Galois field with 4 elements).

The probability of detecting the active factors increases with the number of factors
studied, but the decrease in the resolution considerably weakens the conclusions which
may be drawn. Such a design of resolution 3 is therefore generally only envisaged as an
intermediate stage which enables rapid detection of the most important factors. It may
be followed by another design restricted to the active factors detected, in order to prove or
disprove the results found and to study the interactions. Another possible continuation,
useful when the number of significant effects prevents interpretation owing to possible
confounding with the interactions, is a design foldover which in total leads to a design of
resolution 4.

4.1.3.1 Complete foldover This possibility of duplication by foldover is well known
when all the factors have two levels: the second design is equal to the product of the first
design by —1. This is called a complete foldover as all signs are changed. Table 29 provides
a classic example, for seven 2-level factors A, B, C', D, E, F', G. If a supplementary factor
N with level 1 on the first design and —1 on the second is added, the global design keeps
resolution 4 with the eight factors.

The property of shifting to resolution 4 through duplication of the design in the case of two-level
factors is real and easily proved in a much more general context as that considered in this instruction
manual. Any design of resolution 3 for 2-level factors, such as for instance the design of Plackett
and Burman for 11 factors and 12 units derived from the 12th-order Hadamard matrix, provides,
through duplication by the opposite design, a design of resolution 4, that is to say, a design in which
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Initial design Complement : —1x initial design
(N=1) (N =-1)

N A B C D FE F G N A B C D FE F (G
1 1 1 1 1 1 1 1 1 9 -1 -1 -1 -1 -1 -1 -1 -1
2 1 1 1 -1 1 -1 -1 -1 10 -1 -1 -1 1 -1 1 1 1
3 1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 1
4 1 1 -1 -1 -1 -1 1 1 12 -1 -1 1 1 1 1 -1 -1
5 1 -1 1 1 -1 -1 1 -1 13 -1 1 -1 -1 1 1 -1 1
6 1 -1 1 -1 -1 1 -1 1 14 -1 1 -1 1 1 -1 1 -1
7 1 -1 -1 1 1 -1 -1 1 15 -1 1 1 -1 -1 1 1 -1
8§ 1 -1 -1 -1 1 1 1 -1 16 -1 1 1 1 -1 -1 -1 1

Table 29: 28~* of resolution 4 obtained by foldover of a 27~* of resolution 3

the common estimation of main effects as the half-difference of the means between levels 1 and —1
is unbiased even if certain couples of factors display interactions.

If the initial design is a regular design that can be constructed by the methods considered here,
the same applies to the duplicated design. Thus in the example of table 29, the defining relations of
the initial design with 8 units are D = AB, E = AC, F = BC, G = ABC. It is then automatically
the case, if IV is the pseudofactor taking the value 1 for the first design, —1 for the second, that the
global design is defined from the 4 basic factors N, A, B, C by the relations D = ABN, E = ACN,
F = BCN, G = ABC. Tt is quite apparent that the defining relations of the initial design which
overall remain valid are relations involving an even number of letters A to G. In particular, three-
letter relations verified by the initial design are no longer verified overall. For example, relation
ABD =1 verified for the initial design cannot be valid overall since ABD = —1 for the additional
design. The defining relations of the overall design therefore include a minimum of 4 letters and this
is indeed a design of resolution 4. Note that this resolution is kept if the supplementary factor N is
taken into account.

When some factors A, B, ... have four levels, this same process of duplication by
the opposite design, applied to the 2-level factors and to pseudofactors A;, Ay, Bi, B,
... derived from the 4-level factors, does not lead to a design of resolution 4 in every case.
In order to produce such a design, the initial design of resolution 3 must not have any
defining word with three factors involving an even number of symbols.

For instance assume there are three 4-level factors A, B, C' decomposed into pseudo-
factors Ay, Ay, By, By, C1, C5, and that D, E are 2-level factors. Then products such as
A1A3DE, A1 Ay By BoC1Cs must be different from 1 in the initial design. Otherwise these
products remain equal to 1 in the opposite design and give rise to defining relation with
only 3 factors in the overall design. The resolution of the latter then does not exceed 3
since it make an interaction of three factors confounded with the mean.

One way to avoid these defining words with three factors but an even number of
symbols is to introduce two pairs {model, part to be estimated} in the search of the initial
design, as illustrated in table 30 for the case of a design with 32 units only. In this table
q=p+A+B+C = A+B+C+D+E+---+ M is the sum of all factors. The requirement
imposed by pair 1 is that ¢ is estimable in model ¢ which is equivalent to resolution 3.
The second pair has an empty model and its “part to estimate”, s.s.s + s.r.r, include all
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products involving three factors but whose sign is unchanged when all the pseudofactors
Ay, ..., Cy and two-level factors D, E, F, ..., have their sign changed.

Indeed, note that when developed, s.s.s includes, alongside with A; Ay By BoC1Cs,
terms such as A1 Ay A1 Ay A1 Ay or A1 Ay A1 Ay By By which are respectively replaced by A1 A,,
A1 AyB; Bs. But since the first pair {¢,q} implies resolution 3, its presence already implies
that these latter products cannot be constantly 1 (or —1). So the only new constraint
imposed by the presence of s.s.s is that the product A; Ay B; B,C1C5 is not constant, but
equal to 1 or —1. Of course it is possible to replace s.s.s by the latter product in this case
with three 4-level factors. But when there are strictly more than three 4-level factors, the

product s.s.s is still valid and more easy to type than the sum of the products similar to
A1A2B1B20102.

Then, the products in s.r.r do not change sign because in each of them, the compo-
nent coming from s does not change sign while both components coming from r change
sign.It is not difficult to see that any product involving three factors either belongs to the
above sum s.s.s + s.r.r or is a product in s.s.r + r.r.r which change sign on the foldover
part.

As noted in section 5.4.2.2, a model is systematically completed by the terms in-
cluded in the terms that appear in it. Introducing s.s.s in a “model” would impose useless
constraint, for instance that a product like A; A, B;BoC7 with an odd number of symbols
is not constant. If s.s.s is among the “part to be estimated”, it is not completed in the
same way and does not include the above product.

The Margolin rule provides a maximum to the number of 2-level factors that can
be introduced. Let indeed n4s and ny be the number of 4 and 2 level factors in the
initial resolution 3 design and N its number of units. Assume the design obtained by the
duplication process is of resolution 4. The factor equal to 1 on this design, to —1 on the
duplicated part can be added without loosing this resolution 4. Hence the duplication
leads to a resolution 4 design with 2N units, ns four-level and ns + 1 two-level factors.
The Margolin rule then gives

1+3ns+ (na+1)+9(ny — 1) +3(ne + 1) < 2N
that is

N
7’LQS5+1—37’L4

In the case N = 32 of table 30, the backtrack search quickly ends with a failure
indicating the maximum attainable nq. In fact, this maximum is the same as that given
by the Margolin rule when ny < 2, and it is slightly smaller when n, > 3. These maxima
are indicated in the array at the bottom of the table.

It is to be noted that the way to select the basic factors may introduce a supplementary constraint.
To avoid such a constraint, it is always possible to introduce pseudofactors that do not appear in
the models or parts to be estimated, as basic factors . The search is then over all possible regular
designs. The drawback is that this makes the search much more longer.

In that case, putting the four-level factors A and B among the basic factors does not introduce
any constraint as there cannot be any defining word involving these two factors only. It is then
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nb. of units 32
Definition of basic factors : user
factor decomposition type : maximum

Model parts

p: D+E+F+G+H+I1I+J+K+L+M
q: p+A+B+C
r:p+A+Ay+ B+ By +C1 + Oy
s: AjAy + BBy + C1Cy
Model Part to be estimated
1 q 1 q
2 2  Ss.S.8FS.I.T

okt Failure of the search on factor J

Order of introduction of pseudofactors :
AiAy By By, D CiCo,EFGHI J KLM
*

nb. of 4 lev. fact. nb. of 2 lev. fact.
reached maximum | Margolin maximum
1 14 14
2 11 11
3 6 8
4 3 5

Table 30: Fraction 4™42™2 of resolution 3 and size 32, that can be duplicated in resolution
4

It is possible to replace the 2nd pair Model, part to be estimated by two pairs: (r.r,s) and (0,s.s.s).
The first forbids a term in s to be equal to a product in the model r.r.
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possible, to avoid any constraint due the choice of basic factors, to introduce a supplementary two-
level pseudofactor Z, that does not appear in the models and parts to be estimated, as the last basic
factor. But in that case it can also be seen that any of the two-level factors searched for can be
selected as basic one without restricting the search. This is so because, as can be easily checked
by using the program with 16 units, no more than 3 two-level factors can be defined as products
between the pseudofactors A;, As, By, Bs with the imposed constraints. Thus as soon as we are
looking for four two-level factors, it is possible to choose one of them as basic one.

Table 31 illustrates the search for the example when N = 64. Since the search
may be very long in that case, it is stopped after a few minutes. It gives again the same
maximum ny as the Margolin rule if ny < 2, and a smaller one when ny > 3. In the latter
case, several random links (RL) were used to start the search and the result given in the
bottom of the table is the better one. The definition of added factors in the case ns = 4,
ne = 17 is given explicitly.

Table 32 providing the Margolin maximum and the attainable maximum when N =
16 is also given for the sake of completeness. The search shows the impossibility to
introduce ns = 3 four-level factors in that case.

As indicated in section 4.1.2, when n4 = 1, Margolin [22] provides a general way to
deduce from an Hadamard matrix of order /V a resolution 4 fraction with the maximum
number of 2-level factors given by the Margolin rule. Agrawal and Dey [1] do the same in
the case ny = 2. The number of units of the provided resolution 4 designs are 4N when
ng = 1, 8N when ny = 2. Since Hadamard matrices exist for almost all N multiple of 4,
i.e. of the form N = 4k, this gives 16k units when ny, = 1, 32k units when n, = 2.

The Agrawal and Dey construct for ny, = 2 appears to use a foldover of a resolution
3. This is not true for the Margolin construct for ny, = 1 . But by slightly modifying
it, as indicated below in the case N = 12, it is possible to get a design with the same
properties built by foldover of a resolution 3 fraction. These constructs therefore also
provide resolution 3 fractions that can be duplicated in resolution 4, with the maximum
number of 2-level factors, for the cases ny = 1, 16k units and ny = 2, 32k units. Since k
can be any integer, these fractions exist for a number of units which are not power of 2,
and they can be used in the same manner as in the regular case, that is to go on with the
experiment after completing the resolution 3 design if too many factors are found to be
possibly active.

A 4 x 2'0 of resolution 3 with 24 units that can be duplicated by foldover in a resolution
4 design.

Let H be the classical 12 x 12 Hadamard matrix with a first column of 1. Let H; be deduced

H gives the searched
H,

design. Its second column is the 4-level factor and columns 3 to 12 gives the 10 two-level factors.
This number 10 is immediately found to be the Margolin maximum in that case. The duplicated
part in the foldover may be obtained by changing all the level signs including those {—3,—1,1,3} of
the four-level factor.

from H by multiplying by 3 the second column of H. Then the matrix [
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nb. of units : 64
Definition of basic factors : user
factor decomposition type : maximum
random link (RL) : 888888

Model parts
p: E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W

q: p+A+B+C+D
r:p+A+A+B +By+Ci+Cy+ D + D,
S A1A2 + BlBQ + 0102 + Dl.DQ

Model Part to be estimated
1 q 1 q
2 3  s.s.sFS.I.T

ek SEARCH INTERRUPTED AFTER 5 MN
Search stopped on factor V'

Order of introduction of pseudofactors :
A1 Ab Bi1 By CiCo Dy Dy EFGHIJKLMNOPQRSTU VW
*

nb. of 4 lev. fact. nb. of 2 lev. fact.
reached maximum  RL Margolin maximum
1 30 30
2 27 27
3 22 0 24
4 17 888888 21

Solution for
ng = 4, Nng = 17

D, = 3202; D, = A1B13201; E= A2B101; F= A13201; G= A2B1C1C2,
H = A2B2, I = A1B20102, J = A1A2B201, K = A2B2CQ, L = AlAgBlcz,
M = A2BlB201C2, N = B1B20102, O = A1A23201C2, P = A1A20102,

Q=A1B;, R=A1AB 1By, §=A14ABBCy, T=DBC1, U=A(C,

Table 31: Fraction 4™42™ of resolution 3 and size 64, that can be duplicated in resolution
4

nb. of 4 lev. fact. nb. of 2 lev. fact.
reached maximum | Margolin maximum
1 6 6
2 3 3

Table 32: Fraction 4™42™ of resolution 3 and size 16, that can be duplicated in resolution
4
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4.1.3.2 Partial foldover Instead of changing the signs of all factors, it is possible
to change only some of them to get the second follow-up design, then called a partial
foldover design on these factors (the sign of which is changed). Montgomery [24] studies
for instance a foldover on only one factor in a classical resolution 2"~ *. This change gives
a foldover design which when combined with the initial fraction allows the estimation of
the main effect of this factor and of all its interactions with each of the other factors.

Ankenman [2] gives tables of resolution 3 fraction for mixtures of two- and four-level
factors, which may be duplicated by partial foldover to get a combined design of resolution
4. We examine below how to obtain such fractions with PLANOR when the factors on
which the foldover is performed are determined.

Consider first a four-level factor A, decomposed into pseudofactors A;, A,. If there is
a change of sign in the foldover on one of these pseudofactors, say A;, it is always possible
to assume there is also a change of sign for the second A,. Otherwise the product A; A
also change sign and by selecting it as the second pseudofactor, that is by interchanging
Ay and A;A,, we return to the situation where both pseudofactors change sign. So
we now assume that for each four-level factor, the foldover is either on both associated
pseudofactors or on none of them.

Table 33 shows such a search for 32 units, ny = 2 four-level and ny = 7 two-level
factors. It is performed first by complete foldover, then by partial foldover on C, E, F,
L, as in the solution given in [2] table 8.

In table 33, the first pair model, part to be estimated is the requirement for obtaining
resolution 3. Then to obtain a design that produces a resolution 4 design when duplicating
it by partial foldover on the four level factor C (that is on C} and Cy) and on the two-level
factors E, F', L, it is necessary to ensure that no defining product involving three factors
keeps the same sign on the foldover. This is done by the second pair model, part to be
estimated with an empty model. The part to be estimated ¢.q.q+ ¢.r.r involves two model
parts ¢ and r. The first ¢ includes all factors or pseudofactors that do not change sign.
Among them are Ay, Ay, A1.As and C;.Cy. On the contrary, the model part r includes
those factors or pseudofactors that change sign. The products in q.q.g+ g.r.r are therefore
those involving three factors that do not change sign. Since these products appear in the
“part to be estimated” associated with an empty model, they cannot be constant on the
fraction.

One way of comparing the 10 designs obtained by this search is to look at their
word length pattern giving for each pair (mg, m4) the number W (msy, m4) of defining word
involving msy two-level and m, four-level factors. Since confounding between main effects
and two-factor interactions arises from defining word of length 3, a possible criterium to
select the design would be to minimise the number of defining word with three factors,
that is L(3) = W (0,3) + W(1,2) + W(2,1) + W (3,0). In the complete foldover (top of
table 34), this minimum is 5. But in fact, an analysis of the aliases in the model p.p
which contains all two factor interactions shows that while only 3 degrees of freedom of
the main effects are estimable with this minimum of 5, there is a solution with L(3) = 8
which allows to estimate up to 4 degrees of freedom of the main effects. In the partial
foldover (bottom of table 34) this minimum is 4 and the corresponding solution is that
which allows to estimate the maximum number 4 of degrees of freedom of the main effects.
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nb. of units 32
Definition of basic factors : user
factor decomposition type : maximum

backtrack search
max. nb. sol. : 10

Basic factors Added factors
fac. lev. fac. lev.
nb. nb.

A 4 F 2
C 4 G 2
E 2 H 2
J 2

K 2

L 2

Complete foldover
Model parts
pA+C+E+F+G+H+J+K+ L
A +A,+Ci+Co+E+F+G+H+J+ K+ L

Model Part to be estimated
I p 1 p
2 r.r 2 Al.AQ + 01.02

Foldover on C, E, F, L.
Model parts
pA+C+E+F+G+H+J+K+L
GA+G+H+J+ K+ 0.0y

r:C,+Co+E+F+1L

Model Part to be estimated
I p 1 p
2 2 q.q.q+q.rr

Table 33: fraction 4227 of resolution 3 and size 32, that can be duplicated in resolution 4.
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The second important thing to consider is then the properties of the combined
resolution 4 designs. The only way to study their properties is to introduce the factor
definitions manually using the field “Predetermined factors”. As already explained, they
can be easily obtained from the definitions of the added factors in the initial fraction. A
basic pseudofactor Z taking level 1 on the fraction, —1 on the foldover, is introduced.
Then every definition remaining true after the change of sign is kept, while if the signs of
the added factor and of the product defining it differ after the change, the pseudofactor
Z is simply added in the definition.

Again criteria that may be used to compare the combined designs are the number
L(4) of words of length 4, the number of degrees of freedom of the two-factor interactions
that can be estimated in a model with all interactions, and finally the number of sets of
2, 3, ... aliased two-factor interactions. We give these criteria in table 34, first for the
ten designs that can be duplicated by complete foldover randomly obtained by PLANOR,
then for the ten that can be duplicated by partial foldover also randomly obtained as well
as for the design proposed by Ankelman.

If partial foldover is used in the frame of a model including all two-factor interactions,
Ankelman’s solution appears to give the maximum 4 of estimable main effects in the initial
fraction, the maximum 21 of estimable interactions in the combined design, finally the
smaller number 3 of groups of strictly more than two confounded interactions. This thus
appears to be the best solution and can of course be introduced in PLANOR using the
field with the predetermined factors in order to get it explicitly.

But it must be observed that solution 2 in the search for a complete foldover allows
to estimate 32 degrees of freedom of the interactions, that is 11 more than any of the
other fractions, when considering the combined design. Though the initial resolution 3
design in that case does not allow the unbiased estimation of any main effect in the model
with all two-factor interactions, that property of the combined design should make this
fraction more attractive than the others in some situation.

4.1.4 Introduction of blocks

The introduction of blocks and of the hierarchical constraint for temperature in the ex-
ample considered in section 4.1.1 is achieved without any difficulty.

Table 35 specifies the parameters of the search for a design of resolution 4, size
64, including 3 factors with 4 levels and 7 factors, including temperature, with 2 levels.
Among the 20 solutions obtained, it is the 6th one which is selected because it provides
a maximum number of 26 unaliased effects in the model including the block effect and
the two-factor interactions. These unaliased effects, which include the 15 = 3 x 3 + 6
main effects of the factors differing from temperature 7', appear in table 36, which also
provides the 37 sets of aliased effects. Once the 63 = 26 + 37 unaliased effects and linear
combinations of aliased effects have been estimated, there are no degrees of freedom left to
estimate error variance. Similarly, all the block effects are observed to be confounded with
interactions. It is therefore not possible to identify degrees of freedom for the estimation of
inter-block variance against which the main effect of the temperature factor 7" confounded
with the blocks is normally tested.
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That can be duplicated by complete foldover
fraction 1 2 3 4 5 6 7 8 9 10
(1) 5 6 7 5 7 8 7T 7T 6 7
(2) 3 0 0 3 1 4 1 2 3 2
(3) 13 16 11 14 13 14 13 11 13 14
(4) 18 32 18 20 23 20 23 18 18 20
(5) § 7 4 9 8 9 8 4 8 9
That can be duplicated by foldover on C, E, F', L
fraction. 1 2 3 4 5 6 7 8 9 10 =«
(1) 4 6 6 7 T 8 8 6 6 7 4

2) 4 3 3 2 2 2 2 1 1 2 4
(3 12 11 11 12 12 14 14 12 10 12 10
(4) 17 21 21 18 18 14 14 18 21 18 21
() 4 5 5 5 4 7 7 6 3 6 3

Table 34: Properties of some fractions for 32 units that can be duplicated

The fraction are for ngy = 2 four-level, ny = 7 two-level factors. They can be duplicated in

resolution 4 by complete foldover (first array) or by partial foldover (second array). Row (1) and

(2) are relative to the initial fraction, rows (3) (4), (5) to the combined design with 64 units.
* :  Ankelman’s fraction

(1) : number L(3) of defining word of length 3 in the initial fraction

(2) : number of main effects of the initial fraction that are estimable in
the model including all two-factor interactions

(3) : number L(4) of defining word of length 4 in the combined design.

(4) : number of interactions estimable in the combined design

(5) : number of sets of 3 or more aliased interactions in the combined
design.
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name HYGIEN1.REG
nb. of units 64

Selection of basic factors :  user

(which define the unit)

factor decomposition type maximum

(into pseudofactors)
Backtrack search - time limit : 30 mn
- nb. max. sol

- random link

Inclusion of factors in
the ineligible set

20
398723

oul

Basic factors Added factors Model parts
1 S1:A+B+C+D+E+F+G+H+I
fac. n'b. fac. lev. block 9§ :S14+T
niv. nb.
Models
A4 Bl 8 < |11 Bl+sS
B 4 T 2 2 85
C 4 D 2 )
E 2 Part to be estimated
F 2
1 S1
G 2 2T
H 2
I 2 Hierarchies
1 T:BI
Design definition, solution 6, random link 520571533
key matrix defining relations
blocs * * * Bli, = A,
By Bl, By T D E F G H I | Blyb = A AyB{C;
A 0 1 0 1 1 0 1 0 1 0| Bl = B;By(;
Ay 1 1 0O 0 1 1 1 1 0 1| T = AB(C
B 0 1 1 0 1 1 1 1 1 0| D = AABCy
B> 0 0 1 1 0 1 1 0 0 1| E = AyB;By(Cs
(o 1 1 1 1 0 0 1 1 1 1|F = AABBC
Cy 0 0 0 0O 1 1 0 0 1 1 G = A,BC;
H = A B;Ci0,
I = A2320102

Table 35: Resolution 4 fraction of a 4% x 27 in 8 blocks of 8 units
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detailed list of the sets of aliased effects in the model

[BlQ]; Clch; BQF; AlG;
[313];B1B2cl;A1A2F;
[BlQBlg],A1A2BQ,
[Bl]; DH; A2C1; B1G;
[BllBlz];AlBl;0102H;
[BllBlg];CzE;AzBlBg;
[BllBlgBl3],T,

DI; BiT; Ay F;

01021; A2B2;
B1B2F;A1A201;
ClF,HI, AlAzBlBQ;TG;
Ai1T; BoChy;
BlBQT;CzH;AlAQG;
C1C2E; A F; BoG;
DE;CT; A1 By; FG;
AlAQBl;CQD;
A>T; B, F; EH,;

EI, Blcl;AQG;

A,Cy; BT
AQBl,TF,ClG,
A1A2T;CQI; BlBQG;
TE;C1D; A2 H,

ByI; AyC1Cy;
FI;C1H; Ay D;
CQT;BlB2H;A1A2_[;
BIBQI; AlAzH,CzG,
BE;C\I; FH;
B102;A1A2D;
AlE;ClczF;BgD;
_D.F7 320102, AQI, EG,
A;Cy; BBy E;
TD;B,I;C\FE;
B,C,Cy;A1H;
A10102; EF, .Bl.H'7 DG,
AlD;BgE;0102G;

list of unaliased effects

Ay; Ag; A1 Az Br; Ba; B1Ba; C1;Co;C1Co; D E5 Fi G Hi T
> A1B1B2; Al(JQ; AlAQClCQ; BQCZ; BlB20102; BlBgD;
> BQH; C1CQT; All; CQF; A1A2E;

list of unaliased block effects (empty)

Table 36: Alias structure for the design of table 35




In fact, neither do the 19 other solutions obtained by this search allow to identify
degrees of freedom for the estimation of inter- or intra-block variances. With this type
of design which contains a maximum number of 2-level factors, we are thus compelled
to perform the analysis using techniques such as those described and referenced in [17],
[19], with the additional problem caused by the presence of two strata, the inter- and the
intra-block ones.

An alternative is to reduce the number of 2-level factors and then attempt to identify
degrees of freedom to estimate the two errors. For inter-block error, it is known that one
of the block effects is confounded with temperature. It might be sought to ensure that
the six other block effects be unaliased, but it is easily demonstrated that when there are
three four-level factors A, B, C, at least one effect of each of the interactions AB, AC,
BC is confounded with the blocks.

Let us consider, for instance, interaction BC. In the products defining the seven block effects in
relation to the basic pseudofactors, A can only appear in the three forms Ay, Ay, A1 As. If it appears
in strictly more than 3 of these products, it necessarily appears in the same form in two of them
and consequently does not appear in the product of these two. Thus there is at least one product
defining a block effect where only B and C appear and clearly both must appear since a block effect
cannot be confounded with a main effect.

There are therefore in this case at least four aliased block effects and at most three
unaliased block effects. In order to be sure to obtain a design providing the maximum
number of unaliased block effects, three block effects are added to the part to be estimated
number 1 of table 35, either in the form Bly, Bly, Bl;.Bl, of three linked effects, or in the
form Bly, Bly, Blj of three independent effects (tab. 37). Note that to indicate an index
to PLANOR, one uses the underline symbol, that is Bl_1 for Bl;, Bl_2 for Bis.

model part to be estimated
Bl +Bl,+Bl;.Bly+S1
1 BI+S.S
* BI,+Bly+Bly+S1
2 S8 T

Table 37: Modif. of the search in tab. 35 in order to estimate the inter-block variance

In both cases, the first 4 two-level factors, among which are 7', are obtained very
rapidly and the search dwells on the 5th factor. Thus four 2-level factors are selected in
addition to the three 4-level factors and the 8-level block factor.

Then for each of the two possible choices for the “part to be estimated” number 1,
twenty solutions are searched with a non-zero random link.

When the “part to be estimated 1” are Bl; + Bl, + Bl,.Bl,, the analysis of aliases
for the 20 solutions reveals the same alias structure (which leads to the idea that there is
in fact only one solution, allowing for possible permutations of factors or pseudofactors).
This alias structure includes 26 unaliased effects and 32 sets of aliased effects. It thus
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leaves 5 = 63 — (26 + 32) degrees of freedom to estimate residual variance and by con-
struction contains three degrees of freedom to estimate inter-block variance.

When the “part to be estimated 1” are Bl; + Blo+ Bls, the analysis of aliases for the 20
solutions reveals several structures. In addition to the three unaliased block effects, these
structures generally include 32 or 33 unaliased treatment effects, 24 or 25 sets of aliased
effects and leave 3 or 4 degrees of freedom to estimate residual variance. Nevertheless, one
of these, solution 2, is clearly distinguishable from the 19 others: it includes 42 unaliased
treatment effects and 17 sets of effects. It thus leaves only 1 degree of freedom for the
residual, but appears clearly superior to the other solutions. Tables 38 and 39 specify
this solution and provide its alias structure.

Model parts Hierarchies
1 S1:A+B+C+D+E+F 1 T:BI
2 S:S14T
Models Part to be estimated
2 S.S 2 7T
Design HYGIEN2, solution 2, random link 1691852795
key matrix defining relations
blocs * * * Bli = A1A3ByC1Cy
By Bl Bls T D E F Bl, = A1BsCy
Aq 1 1 1 1 0 1 0 Bls = A1A:B1Co
Ag 1 0 1 0 1 1 1 T = A1BCi0C
By 0 0 1 1 0 1 1 D = AyBy(Cy
By 1 1 0 0 1 1 1 E = A1AB1B,(4
Cq 1 0 0 1 1 1 0 F Ao B1B2Cy
Cy 1 1 1 1 0 0 1

Table 38: Resolution 4 fraction of a 43 x 2% in 8 blocks of 8 units

Of course, there is nothing to preclude duplication of a block in such a design This
provides an additional degree of freedom for inter-block residual variance and 7 for intra-
block residual variance. These degrees of freedom provide “pure” error variances insofar
as they are not inflated by potential interactions of three or more factors. Nevertheless,
the statistical analysis of the non-regular design thus obtained is more complex and the
practical relevance of this kind of repetition appears to be of little relevance, in the context
of the screening of influencing factors, in which the absence of effects of several factors
provides the possibility, on the contrary, of identifying the active factors without difficulty.

Taking into account blocks in designs of resolution 3 as those considered in tables 30,
31, 32 may be done by requiring that the main effects different from the temperature
effect are estimable within the model including all main effects and the block effect. In
the considered cases, the allocation among blocks of size 8 appears possible without any
reduction of the number of two-level factors. When duplicating, one add as supplementary
block pseudofactor the one equal to 1 on the first part, to —1 on the duplicated part.
Table 40 shows for instance how to introduce the block search in the case with N = 32
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detailed list of sets of aliased effects in model Bl + S.S

BBy F; A3Co;
B1B3Cy; Ao F;
AT; B1C1Cy; DF;
C1CyF; A E; B1D;
BlF; TE; CngD;
BT EF; A1C1Cy;
A1B1; CngT; DE,
C1CyF; A F; TD;
TF;BE; A1 D;

[BllBlgBlg]; T;
[Bl1Bl3]; B1ByCy; Ay Ay E;
[BlQBlg]; CQF; A2B1B2;
[Bl1 Bly]; A2C1; Bo D
A1A2B1By; C1 E;
A1A2C1; B1 Bo E;
ByCh; Ay D
AgBy; C1 D;

list of unaliased treatment effects

Ar; Ag; Ay Ag; Cy; Co; C1Co; By By BBy D E5 F
A1 By; A1 B1Ba; A2 B; A1 A2 By; A1 Ag Bo; A1Ch;
A1Cy; AsC1Co; A1 A2Co; A1 A3C1Cy; B1Ch; B1Co;
BsCy; BoC1Cy; B1BoC1Cs; A1 Aa Dy A By Ay Ao I
AQT; A1A2T; BIBQ_D; BQE; BQF; BQT; BlBQT; CQD;
CoFE; C1F;CiT; CoT;

list of unaliased block effects

Bly; Bly; Bls;

Table 39: Alias structure for design of table 38

units, ny = 2 four-level, ny = 11 two-level factors. The symbol ~ is used in this example
to substract T from the part to be estimated (see paragraph 5.4.2.5). Note that if T was
not to be constant on each block and was to be estimated within blocks, the number of
two-level factors would have in that example to be reduced of 1.

Through the option “study of aliases” in the general menu (table 53, section 5.7) one
get the “word pattern” for each of the 11 solutions randomly obtained by the backtrack
search defined in table 40. This word pattern gives in this case, for each couple (my, my)
of integer, the number of defining words including msy two-level, m, four-level factors.
Fractions that have different word patterns cannot be equivalent in the sense there is no
permutation of the factors transforming one into the other. Fractions that have the same
word pattern may be non equivalent, but there is a high probability there are in fact
equivalent.

The 11 solutions have in fact three different word patterns which suggests that, up
to a permutation of the factors, there are three really different fractions. The solution 1,
2 and 5 are found to be representatives of these three fractions. It is then easy to find the
defining contrasts of the resolution 4 fractions of size 64 obtained by duplicating them
by complete foldover, and to study and compare aliasing in them. Solution 2 appears to
be the one that gives the biggest number 8 of unaliased two factor interactions (versus
7 in solution 1 and 6 in solution 5). That solution 2 has 20 sets with only two aliased
such interactions (versus 12 and 10), but it has 15 sets of 5 and more aliased two-factor
interactions (versus 7 and 5). It is therefore not clearly better than the two other solutions,
but we selected it as an example (table 41) to illustrate how the defining contrast of the

62



name : HYGIEN3.REG
nb. of units 32
Definition of basic factors :  user
factor decomposition type :  maximum
Backtrack search - time limit : 10 mn

- nb. max. sol : 11

- random link : 123456

Basic factors Added factors
fac. nb. fac. nb.lev. bloc fac. nb.lev. fac. nb.lev.
niv.
Bl 4 — G 2 K 2
A 4 D 2 H 2 L 2
B 4 E 2 I 2 T 2
C 2 F 2 J 2

Model parts

p:C+D+E+F+G+H+I+J+K+L+T
q: p+A+B
r:p+A1+A2+Bl+BQ
s: A1Ay + B1By
Model Part to be estimated
0 qg+Bl 0 g~T
1 q 1 T
2 r.T 2 S
Hierarchies
1 T : Bl

Table 40: Blocking a fraction 422! of resolution 3 and size 32 that can be duplicated in
resolution 4
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duplicated resolution 4 fraction are deduced from those of the initial resolution 3 one.

2nd key matrix (random link 1311708280)
blocs * *
Ay Ao By B C Bly Bb D EF G HIJKTULT
A 1 0 0 0 0 1 1 1100 101101
Ao 0O 1 0 0 0 O 1 1.1 11 011000
B 0 0 1 0 0 1 0 1 001 001111
B> 0O 0 O 1 0 0 1 1.1 11 011000
C o 0 0 o0 1 0 o 01 1 1 101110
Defining relations

of resol. 3 fraction (multiplicative) Predetermined factors of its resol. 4 complete foldover

Blh = Ai1By 1 Bh = Ai1B:

Bl = A1A3Bs 2 Bly = A1A3B>

D = A1A3B1B> 3 D = A1A3B1B2Bly

E = A1A3B2C 4 E = A1A2B2CBly

F = A3B>C 5 F = AxBxC

G = AsB1BxC 6 G = A3B1B3CBly

H = AC 7 H = AiCBl

I = A2B> 8 I = A2B3Bly

J = A1A3B1B>C 9 J = A1A3B1B>C

K = A1B:C 10 K = Ai1B:iC

L = BiC 11 L = B1CBly

T = Ai1B: 12 T = Ai1B1Bl

Table 41: Solution 2 in the backtrack search of table 40

The example of a search of a resolution 3 fraction with 64 units, 4 four-level and 10
two-level factors that can be duplicated in resolution 4, shows again that partial foldover
may be less interesting than the complete foldover. The latter can estimate up to 37
isolated two-factor interactions, has 29 groups of two aliased two-factor interactions and
only 32 of strictly more than two such interactions. The introduction of blocks in it
however reduces the number of estimable two-factor interactions as six of them are aliased
with block effects in the result of the search.

4.1.5 About the notion of minimum aberration

Minimum aberration has been introduced by Fries and Hunter [13] as a tool to select a
fraction among those a a given resolution. As pointed out in [17], it is only when the
number of words of minimum length is small that a design with minimum aberration will
make estimable the maximum number of effects. For instance in the case of a regular
resolution 4 fraction 2" ™ with W, words of length 4, table 42 gives the minimum number
ko of unaliased two-factor interactions. The table shows that a fraction with W, = 7
make in some case only 21 interactions confounded, while a fraction with Wy = 5 (resp.
Wy = 6) will make at least 24 (resp. 28) two-factor interactions confounded. Indeed
the minimum aberration fraction 2°* has W, = 6 defining words of length 4 and make
28 two-factor interactions confounded whereas the 2°~* regular fraction appearing in the
tables [25] has W, = 7, that is one more defining word of length 4, but make only 21
two-factor interactions confounded.
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Weil 2 3 4 5 6 7 >T7
ko |6 12 15 21 24 28 21 > 21

Table 42: Minimum number of aliased two-factor interaction in resolution 4
4.2 Mixture of quantitative and qualitative factors
4.2.1 Polynomial and pseudofactorial effects

Let us now assume that at least one of the 4-level factors, for example A, is quantitative.
Dissymmetry then occurs between the three associated effects A;, Ay, A1 Ay and it is
possible to draw on this dissymetry to select the design. Here we provide an overview
of the way of proceeding. A more detailed description and, in particular, the precise
definition of polynomial effects, can be found in [17], [7].

By polynomial effects we here refer to all the effects, regardless of the qualitative
or quantitative nature of the factors they contain, where the quantitative factors appear
in polynomial form. For instance, ifA is quantitative with 4 levels, and B is qualitative
with 2 levels, the polynomial effects are the main effects B, lin A, quad A, cub A and
interactions lin A. B, quad A.B, cub A.B. They should be distinguished from the pseudo-
factorial effects associated with the products of pseudofactors: B, A, A,, A1As, A1.B,
Ay.B, A1As.B. When there are quantitative factors, it is the polynomial effects which
are really meaningful, formalize hypotheses and must be estimated.

The construction method used by PLANOR is not directly adapted to quantita-
tive factors and to the estimation of polynomial effects. Nevertheless, if the correspon-
dence between the quantitative levels and pseudofactor levels is chosen appropriately, the
pseudofactorial effects are expressed in relation to the polynomial effects in a simple form,
which may be utilized to search for defining relations between pseudofactors which are
adapted to the quantitative nature of certain factors.

More specifically, for each 4-level quantitative factor, the correspondence between
ordered levels and pseudofactor levels is chosen as indicated in table 43. This choice is
the standard PLANOR choice and it is therefore not necessary to redefine the levels in
order to obtain it.

The ordered levels appearing in table 43 are the first four integers 0, 1, 2, 3, which
can always be reverted to by changing the origin and scale. The correspondence of table 43
produces the relations appearing in table 44.

These relations are used to express a pseudofactorial effect in relation to polynomial
effects or, reciprocally, a polynomial effect on the basis of pseudofactorial effects. The
products obtained following substitution of the terms appearing on the left-hand side of
the equalities in table 44 for those appearing on the right-hand side may then be developed
in the usual manner. For example, if B is also a 4-level quantitative factor decomposed
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notation notation
additive  multiplicative

A A A A A
0 1 1 -1 -1
1 1 0 -1 1
2 0 1 1 -1
3 0 O 1 1

Table 43: Pseudofactors decomposition of a quantitative factor A

Ay = (2linA —cub A)/V/5 linA = (24, + 45)/V5
A1A2 = quad A quad A = A1A2
Ay = (linA+2cubA)/V5 cubA = (—A; +245)/V5

Table 44: Relations between polynomial and pseudofactorial main effects

in a similar fashion to A, and C' is a two-level factor:

AC = (linA+2cub A)C/v5 = (lin A.C 4+ 2cub A.C)/V/5 ,
A1 By = (2linA —cubA)(2lin B —cubB)/5

= (4linAlin B —2cub Alin B — 2lin Acub B + cub A cub B)/5,
A1A;B; = quad A(2lin B — cub B)/v/5

(2 quad Alin B — quad A cub B)/V/5
(4A1B1 + 2A5B1 + 2A1By + A3 Bs) /5 .

These relations and the assumptions made on polynomial effects enable nesting of
the different pseudofactorial effects and suggest search strategies for regular designs.

When all the factors are qualitative, the main criterion for classifying a factorial
effect is the number of factors which appear. A realistic assumption, when little infor-
mation is available a priori, is that the higher this number, the weaker such an effect is.
In particular, interactions of three or more factors are often assumed to be zero, which
results in the search for resolution 5 designs.

This number of factors appearing in the effect remains an important element in
classifying polynomial effects in cases in which there are quantitative factors. Nevertheless,
another criterion is involved in this case: the degree of the polynomial effect. This degree
is 1 for a qualitative factor and equal to the polynomial degree for a quantitative effect,
that is to say, 1 for a linear effect, 2 for a quadratic effect, 3 for a cubic effect. The degree
of an effect which involves several factors is the sum of degrees for each factor. Thus the
degrees of lin Aquad B, cub A.C are 3 =1+ 2 and 4 = 3 + 1, respectively. A hypothesis
often formulated is that polynomial effects of degree 3 or above are zero. A less restrictive
hypothesis is that only the polynomial effects of degree 3 which do not belong to the main
effects, i.e. involving at least two factors, are equal to zero.

Two approaches may be adopted to make effective use of the hypotheses on poly-
nomial effects. The first [14] is exclusively based on pseudofactorial effects equal to zero
with a view to obtaining a regular design. The resulting design is orthogonal with respect
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to the polynomial effect and enables estimation of polynomial effects with an efficiency
of 1, that is to say, with a variance identical — allowing for size adjustment — to that
of a full factorial design. The second approach [8], based on a more refined use of the
relations in table 44, provides designs with a much lower number of units. The latter
are not orthogonal but display nonetheless excellent efficiencies in estimating polynomial
effects.

Both approaches generally give rise to designs with properties of uniform distribution
of points which make them quite robust with respect to the selected model and, for
this reason, preferable in many cases to the D-optimal designs obtained by algorithmic
procedures. The description which we provide here of these approaches is further set out
in [17] which can be referred to for additional information.

4.2.2 Regular designs that are orthogonal for the polynomial model

Under the assumption that polynomial effects of degree 3 or above are zero, the pseud-
ofactorial effects expressed only from polynomial effects of degree 3 or above are equally
zero. Including the other non-zero pseudofactorial effects in the model and part to be
estimated ensures that the design obtained enables estimation of all the polynomial ef-
fects of degree 1 or 2. It is moreover orthogonal with respect to these polynomial effects
which it estimates with the same efficiency as a full factorial design, that is to say, with
an efficiency of 1. This efficiency is not always in this case maximum efficiency, but the
designs thus constructed have a very good overall efficiency and also good robustness with
respect to the model.

Let us consider for instance a case in which there are 16 units, two 4-level quantita-
tive factors A and B, and one two-level quantitative factor C.

If the polynomial effects of degree 3 or above are zero, the same applies to all
the pseudofactorial effects containing 3 or more symbols. For example, A;AsB; =

(2quad Alin B — quad A cub B)/+/5 is zero since quad Alin B and quad A cub B, of de-
grees 3 and 5, respectively, are both zero.

The design of resolution 5 defined by A;A; B ByC' = 1 then enables estimation of
all the pseudofactorial effects with 1 or 2 symbols, and subsequently all the polynomial
effects of degree 1 or 2. It is thus adapted to the quantitative nature of factors A and B.
This design may be obtained in PLANOR by defining the model and part to be estimated
by P.P where P is the model part defined by P: A 1+ A2+ B 1+ B 2+C.

In general, the smallest degree of polynomial effects on the basis of which a pseudo-
factorial effect is expressed is easily obtained. For instance, if A, B are quantitative with
4 levels, C' is qualitative with 4 levels, this smallest degree is 4 for effect A; B;ByC1C5. In
order to obtain it, the number of pseudofactors derived from quantitative factors and the
number of qualitative factors are totalled, that is to say, 3 for the three pseudofactors Aq,
B, B, and 1 for the qualitative factor C.

In accordance with this calculation method, if the design is of resolution 5 when
the pseudofactors derived from quantitative factors are assimilated to factors, it enables
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orthogonal estimation of all the effects of a polynomial model of degree 2.

For instance, with 64 units, it is possible to study in resolution 5 up to 8 two-
level factors. The replacement of certain factors by pseudofactors derived from 4-level
quantitative factors results in orthogonal designs for a model of degree 2 with 1, 2, 3 or
4 four-level quantitative factors and 6, 4, 2 or 0 two-level factors, respectively. Table 45
provides an example with 2 four-level quantitative factors A, B, and 4 two-level factors
C, D, E, F. A four-level block factor BL was added. Finally, the main effects of A and B
were included in the model and part to be estimated in order to enable the estimation of
effects cub A and cub B. It would have been possible, without restricting choice, to take A,
B together with two of the 2-level factors as basic factors. However, the standard option
was selected in this case to define the basic factors, in order to illustrate the corresponding
outputs.

name : QUANT1
nb. of units : 64
Selection of basic factors :  standard
(which define the unit)
factor decomposition type : maximum
Added factors Model parts
fac. lev. block
e block| | p. A, 4 Ay4+B,+By+C+D+E+F
Models
A 4
P.P+A+B+BL
B . +A+B+
C 2 Part to be estimated
D 2
P.P+A+B+BL
B 5 +A+B+
F 2
BL 4 —
Design definition
key matrix defining relations
A, A, By B, C D E F BL; BLs C = A;A5B{B>
27 1 O O 0 1 0 0 1 1 0 F = A;ADE
29 0 1 0 0 1 0 0 1 0 1 BL; = A;B;D
23 0 0 1 0 1 0 0 O 1 0 BL, = A,;B;E
22 0 0 O 1 1 0 O O O 1
2 0 0 O O 01 0 1 1 0
26 0 0 O O 0 0 11 0O 1

Table 45: 1/4 fraction of a 4 x 4 x 24, fitted to 4- levels quantitative factors

4.2.3 Non orthogonal for the polynomial model regular designs

4.2.3.1 1/2 fraction of a 4 x 4 for two quantitative factors Let us consider a case
in which there are two 4-level quantitative factors A and B and a model assumed to be
of degree 2. This model has 6 parameters: the constant, lin A, lin B, quad A, quad B and
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lin Alin B. But there are only 5 pseudofactorial effects whose expression in relation to
polynomial effects does not display any of these parameters and which are therefore zero:
A1AsBq, A1A3By, A1B1By, A3B1 By, A{A3B1By. The method described in the previous
paragraph therefore does not help to find an appropriate 1/2 fraction, because such a
fraction should enable the estimation of 11 = 16 — 5 parameters with only 8 units. Since
the polynomial effects of degree 3 or above are assumed to be zero, the pseudofactorial
effects are expressed in the form provided in table 46.

A, = 2linA/V/5 B, = 2linB/\5
A1Ay = quad A BB, = quadB
Ay, = linA/V5 B, = linB/\V5

A1B; = 4linAlinB/5
A1By = 2linAlinB/5
AyB; = 2linAlinB/5
AB, = linAlinB/5

Table 46: Expression of pseudofactorial effects in a degree 2 model

It is apparent that lin A can be estimated from a single of the two effects A; or A,.
These two effects, however, do not provide the same information. An estimate é(A;) with
a variance o2/n (where n is the size of the fraction) produces an estimate v/5é(A4;)/2 of
lin A with a variance (5/4)0?/n, while an estimation é(As) with the same variance o?/n
produces an estimate \/5é(A,) of lin A with a variance 50%/n four times greater. It is
thus preferable to have Ay confounded rather than A; on the fraction.

One comment applies to both lin B and lin Alin B. Thus the latter effect can be
estimated from each of the effects A; B, A1 Bs, Ay By, A3 By. Nevertheless, the estimation
variance, equal to (25/16)0?/n on the basis of an estimate é(A4;B;) with a variance o2 /n,
becomes (25/4)0?/n on the basis of A;By or AyB;, and 2502 /n on the basis of AyBs.
The information provided, by definition, inversely proportional to variance, are in the
ratios 16, 4, 4, 1. When several estimates are combined, the information is combined. For
example, if we have independent estimates é(A;B;), é(A;Bs) with a variance o2/n, the
combined estimate of lin Alin B

165

%16(14131) +

4

5.
502 ¢ (A1B2)

has a variance (25/(16 + 4))o?/n. Thus the pseudofactorial effects providing minimal
information should primarily be confounded, i.e. A3B; and, if necessary, A; By, AsBy.

These considerations lead to the search for a fraction 1/2 of the full factorial design
of size 16 = 4 x 4 which make the substantial pseudofactorial effects A;, A1 A, By, B1 B>,
A1 B confounded only with the 5 effects equal to zero. The corresponding model and
part to be estimated appear under the heading “search nb. 1”7 in table 47. The model
contains all the non-zero effects, that is to say in this instance, those effects displaying at
most 2 pseudofactors. Unfortunately, this search fails. The request must thus be made
more flexible by authorizing confounding of the 5 above-mentioned substantial effects
with minor effects such as AyB;, A; By, A3Bsy. The corresponding model and part to be
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fac. nb.

niv. | | P:A1+A2+B;+B;

nom QUANT2
nb. of units 8
Selection of basic factors : standard
factor decomposition type :  maximum
Backtrack search - time limit : 10 mn
- max. nb. sol. 999
Search nb. 1 Search nb. 2
Added factors
Model parts Model

A;.A>+B{.B>+A;.B;

Part to be estimated

A 4 Model
B 4 P.P A1+A1.A2+B1+B1.B2+A1.B1
Part to be estimated Defining relation

A1—|—A1.A2+B1+B1.B2+A1.B1 A2B2 =1

FAILURE OF THE SEARCH
Search stopped on factor Bs

Table 47: 1/2 fraction of a 4 x 4, with quantitative 4-level factors

estimated are specified under the title “search nb 2” in table 47. The study of aliases for
the solutions obtained shows that there is in fact only one solution defined by the relation
A;By = 1. For this solution, the basic estimable linear combinations are

E((y,1)/8)

E (<y, Al.AQ.B1> /8)

6(1) + G(AQ.BQ)

G(Al) + €(A1.A2.B2)

G(AQ) + G(Bg)

G(Al.AQ) + e(Al.BQ) 7
G(Bl) + e(AQ.Bl.BQ) ( )
6(A1.B1) + e(Al.AQ.Bl.BQ)

6(A2.B1) + €(B1.B2)

e(Al.Ag.Bl) + €(A1.B1.B2) y

where y is the vector of the 8 observations and ( ) denotes the usual scalar product of R®.

The vectors 1, Ay, ..., A1 Aq, ...

appearing in the scalar products are the vectors of 1 and

—1 naturally associated in multiplicative notation with the corresponding pseudofactors

or products of pseudofactors.

In view of the equalities in table 46 and since pseudofactorial effects including 3 or
4 symbols are zero, the system (7) is rewritten in the form

E({y,1)/8)

(y, A1) /8)

(y, As) /8)
(y, A1.42) /8)
{y, B1) /8)
(y, A1.B1) /8)
éy , Ay.B1) /8)

SRGRGRGNGNG NS

E(
(
(
(
(
(
(

A1.A2.By) /8)

e(1) + linAlinB/5

21in A/V/5

lin A//5 + linB/V5

quad A + 2linAlin B/5 (8)
2lin B/\/5

41lin Alin B/5

2linAlin B/5 + quadB

0
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The scalar products between y and A;, By, A;.B; enable direct estimation of the linear
effects lin A and lin B and the interaction lin Alin B. The estimates of the general mean
and of the two quadratic effects are inferred from these estimates and of the scalar products
with 1, Al.AQ, AQ.Bl.

Table 48 provides the estimates thus obtained, together with their associated vari-
ances and efficiencies. The calculation of variances is based on the fact that the scalar
products on the left-hand side of (8), (y,1) /8, (y, A1) /8, (y, As) /8, ... are uncorrelated,
with a variance 0%/8. The comparison of variances thus obtained with variance 2/16 of
the polynomial effects in the full factorial design provides - after adjustment for the fact
that there are half as many observations in the fraction - the efficiencies appearing on the
right-hand side of table 48.

The notation e() is used to represent polynomial effects in this table. Thus the
linear effect lin A, the interaction lin Alin B are represented in the table by e(lin A),
e(lin Alin B). This notation, adopted in [7] to distinguish polynomial pseudofactors from
their effects, is also convenient to represent the estimates by placing a circumflex or tilde
over the e.

estimation variance factor efficiency
elind) = (v5/2) (y, A1) /8 (5/4) 0*/8 1/5
elinB)  =(v5/2)(y, B1) /8 (5/4) 0?/8 4/5
é(lin Alin B) = (5/4) y,A131 /8 (25/16) 0%/8 16/25
é(1) :( 4)(y,A1B1)>/8 (17/16) 02/8 16/17
é(quad 4A) = y,A As) —(1/2) (y, A1B1)) /8 (5/4) 0%/8 4/5
é(quad B) = (({y, A2B1) — (1/2) (y, A1B1) ) /8 (5/4) 0?/8 4/5

Table 48: Estimates of polynomial effects in the fraction 4%/2

The information provided by (y, As) /8 on lin A and lin B has not been used. It may
be used to obtain the least square estimators of these two parameters. For the purpose
of the calculation, only the lines associated with the scalar products (y, A1) /8, (y, As) /8,
(y, B1) /8 need to be taken into account in the system (8). They are rewritten in the
following matrix form

WAy /811 120 g
El|(yA)/8|=—2|11]]. :
weyss] V5 |o o [hnB]

and lead to the estimates provided in table 49.

Instead of improving the estimation of lin A and lin B with the information provided
by (y, As) /8, the pseudofactor A, can be used to divide the design into two blocks. If the
block factor is denoted by C', we obtain C = A, and the row associated with A, in the
system (8) becomes

E ((y, Ay) /8) = lin A//5 +1in B/v/5 4 ¢(C) .
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estimation variance  factor efficiency
&(lin A) = (v/5/12) (5 (y, A1) + 2 (y, As) — {y, B1)>/8 (25/24)0%/8 24/25
&(lin B)=(v/5/12) (- (y, Ar) + 2 {y, As) + 5 {y, Bl)) /8 (25/24)0%/8 24/25

Table 49: Least square estimates of the linear effects in the fraction 4%/2

The information provided by (y, As) /8 can thus be used to estimate the block effect e(C):
&(C) = (y, As) /8 — <é(1in A) + é(lin B)) /5

This distribution into two blocks is useful if the loss of information on the linear effects
which is induced is offset by the reduction in the residual variance o2

The pseudofactor A;A;B; can also be used to define a second two-block system
crossed with the former system. The drawback, then, is that there are no degrees of
freedom left to estimate the error.

The practical relevance of this small example is limited, but it effectively shows the
flexibility of this construction method. The example in the following paragraph, taken
from [7], illustrates the use of this method to create a design that is considerably smaller
in size.

4.2.3.2 1/16 fraction of a 4*2* with two quantitative factors With a view to op-
timizing the culture medium of a rhizobial symbiont of soya ( Bradyrhizobium japonicum),
7 composition factors from this medium are studied, including three 4-level factors and 4
2-level factors. Out of the three 4-level factors, A is qualitative, and the two others, B
and C are quantitative. Table 50 specifies the search performed.

The first couple model, part to be estimated ensures that the main effects and major
interactions between two factors are not confounded among themselves. All the inter-
actions which exhibit neither of the two pseudofactors By and C5 are considered to be
major.

The second couple model, part to be estimated, in addition, requires that the design
be of resolution 4, that is to say, which enables the estimation of all the main effects in a
model containing all the two-factor interactions. The quantitative aspect is not taken into
account in this second couple, introduced to ensure maximum robustness in estimating
main effects of all degrees.

The full, exhaustive search, requested by giving 999 as the maximum number of
solutions, generates a set of 1152 solutions. The analysis of these solutions, conducted by
a specific program, showed that they were all derived from 6 basic solutions by switching
factors or pseudofactors with symmetric roles, that is to say, D, E, F', G first, then B
and C, and finally, A;, Ay, A;A,. These 6 basic solutions are provided in table 51, where
three overall efficiency measurements are also reported, so that these solutions may be
compared with regard to variance.
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name :  RHIZOG6
nb. of units 1 64
Selection of basic factors :  user
(which define the unit)

factor decomposition type :  maximum
(en pseudofacteurs)

Backtrack search — time limit : 20 mn

- max. nb. sol. 999

- random link : 0
Inclusion of factors in the : yes
ineligible set

Basic factors Added factors Model parts

1 p: A+B;+Ci+D+E+F+G
fac. . . .
ac.  nb fac. . nb 2 q A+B+C+D+E+F+G

niv. niv.
Models
A 4 D 2 1
B 4 E 2 o OP
c 4 F 2 44
G 2 Part to be estimated
1 pp
2 q

Table 50: 1/16 fraction of a 432* including 2 quant. 4-lev. fact.

Table 52 specifies the efficiencies, for each effect, of the best three designs for overall
efficiency. In the third design, interactions including A, each of which have three degrees
of freedom, are characterized by three efficiencies, referred to as main efficiencies. The
specific definition of these efficiencies is given in [16] and [17]. The lowest of these 3 effi-
ciencies is the lower bound of efficiencies for all the contrasts belonging to this interaction.
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plan defining relations

AlBlBQClD = ]_,

1 AgBlClCQF = 1,
9 AlBlBQClD = ]_,
AlBlCngF = 1,
3 AlBgch == 1;
A1B10102F = 1;
4 AlBgch == 1;
AlBlclch = 1;
5 AlBQClD = 1,
AlBlBQCQF = 1,
6 A1B201D = ]_,

A2B1B202F = ]_,

AQBlBQCQE = 1
AlBgCngG = ].
AQBlBQCQE - 1
AlAngclch -
AQBQCQE == ].

A1 A9 B BoCLCG
AQBQCQE =1
AlAngCngG =
AQBngE = 1
AQBZClCQG - 1
A1B102E =1
AlAngCngG =

1

=1

1

1

trace

0.948

0.934

0.912

0.900

0.883

0.874

det

0.976

0.969

0.958

0.956

0.946

0.944

min. eigenval.

0.434

0.460

0.460

0.330

0.400

0.330

Table 51: Global factor efficiencies for the 6 solutions

Effet

A
lin B,linC'

quad B, quad C

D,E,F,G
A.lin B
AlinC
AD

AE

AF, AG
lin B.linC
lin B.D
lin B.G
lin B.F
lin B.FF
linC.D

Factor efficiency
Design 1 Design 2 Design 3

I T T = Sy e

—

0.640
0.840
0.840
0.840
0.840
0.840

lin C.E,lin C.F,linC.G 0.840

DE
DF
DG
EG
EF
FG

0.810

0.810

1

U N G W T G T

1

0.960
0.800
0.800
0.800
0.960
0.960
0.800
0.800
0.960
0.800
0.667
0.800
0.800

1

Pt ek et ek pd e ek

1 1 0.800

0.800
0.840
0.800
0.960
0.800
0.840
0.800
1

1

1

0.800
0.800
0.667

0.840 0.800
0.960 0.840
1 0.833
1 0.952

Table 52: Factor efficiencies in the 3 optimal solutions for the trace
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5 Use of the program

5.1 System requirement

PLANOR runs under Windows (95, 98, NT, XP). The installation manual is in the file
instal.

5.2 Generalities

Most of the useful indications for operating the program appear on the screen. The user
can also have easy access to online assistance, local or general, by clicking on the buttons
“Local help” or “General help”.

As a general rule, the user introduces the information necessary for the program
in different fields. With regard to moving between fields, modifications and validations,
the program follows the usual Windows conventions. Pressing esc enables the user to
backtrack. Pressing ~ Break (”Attn on certain keyboards) is used to interrupt a design
search in progress and adjust the permitted time limit for this search (the ~symbol repre-
sents the Ctrl key which must be kept pressed while pressing the next key. If this time is
reduced to 0 mn, the search is effectively terminated, otherwise it resumes by validating
the new time limit with the <! (Enter) key. The ~Alt Del sequence (press the 3 keys
at the same time) stops the execution of the program. “Task Manager” must then be
selected, followed by “End Task” which must be selected twice.

5.3 Short description of the different modules

Invoking PLANOR displays the general menu in table 53. This paragraph describes the
different possible options in this menu.

Software PLANOR
Creation of a reqular design ......... ... . oo, 8 5.4
Modification of a reqular design ............ ... . . ... 8 5.4
Creation from a previously obtained matrix ........................ § 5.4
Randomization ...... ... ... § 9.5
Recoding, factor selection, SOTting... ..........cccceeiieieeeiiiiaai. § 5.6
Study of aliases ....... .. .. . . . § 5.7
Content of REG files ...... ... e § 5.8
Indtialization ...... ... .. § 9.9

Table 53: General menu

During the creation of a reqular design, the user introduces the parameters defining

75



the search (fig. 2 and 3). These parameters are stored in a file with the suffix REG. The
results of the search, once it is completed, are also stored in the same REG file. These
results are one or several key matrices.

Through modification of a regular design the parameters of a previously defined
regular design can be modified. In an exploratory phase, it is also possible to change the
model, the part to be estimated, and to insert or delete defined factors. This option can
also be used to create a new design by modifying an old design. In this case, the name of
the design will be carefully changed to avoid overwriting the initial REG file.

If only a single matrix is required, upon completion of the search, the program
automatically leads to the design module creation and then to the randomization module.
It thus constructs a file with a PS suffix providing the Systematic order Design, then a
PR file providing the Randomized Design.

In cases in which several matrices are sought, the solutions obtained may be ex-
amined by the study of aliases. The PS and PR designs corresponding to the solution
adopted are then constructed by using the option Creation from a previously obtained
matric.

Randomization can be interrupted by a esc and subsequently resumed by selecting
the option randomization. The parameters defining randomization — model providing the
block structure and, in particular, the random link — are saved in the initial PS file. If
this file is randomized again, the same parameters are then proposed in a standard way
to the user, who can thus perform the same randomization again, simply.

Several subsidiary operations prove to be necessary in order to develop — from one
or several regular designs - the appropriate design for a particular situation. The module
Recoding, selection of factors, sorting, ... makes it possible to perform several of these
operations simply: creation of a new factor produced from pseudofactors, recoding of
levels, elimination of useless factors, repetition of certain units, merging of certain designs,
sorting. The design created by these operations may be stored in the form of a new PS
file, or writed in a text file used as a basis for the development of the design. In the
latter case, the numbers of levels used for internal coding may be replaced by the actual
specified levels with a view to facilitating the reading of the design.

A file with an HIS suffix (resp. HIR), in which the modifications are saved, is
associated with each PS file (resp.PR). Thus, during the writing of the design, indication
can be provided of the way in which this HIS file is obtained.

In addition to the specific REG, PS, PR, HIS, HIR files, the PLANOR modules
create text files explicitly providing the calculation results. A standard name with an
OUT suffix is proposed for these files, but the user may of course modify this name as
wished.

The specific files are in fact APL files whose SF suffix has been changed. People
who have an APL interpreter can thus read these files, whose contents are specified in
paragraph 5.8.
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5.4 Creation or modification of a regular design

The information required to define the search is provided in screens 1 and 2 (figure 2, 3).

5.4.1 Screen 1 (fig. 2)

Screen 1 contains the following fields.

5.4.1.1 name This name is used as a prefix for the output files. Thus if we enter
EXAMPLE, the output files are EXAMPLE.REG, EXAMPLE.OUT, etc ...

5.4.1.2 number of units : number of experimental units.

5.4.1.3 Selection of basic factors . Option standard, user.

This field determines the defining mode of basic factors, whose combinations of levels serve
to identify the different experimental units. These basic factors can be pseudofactors used
only to identify the units, but which have no real physical sense and do not appear in any
model. This is particularly the case in the option standard in which the program introduces
a pseudofactor for each prime appearing in the decomposition of the number of units into
primes. The program also gives these pseudofactors a standard name, consisting of the
prime in question followed by underscore _ and by the sequence number. For example, if
there are 36 units, the pseudofactors introduced in the standard option are 2_1, 2.2, 3_1,
3_2.

This standard option provides considerable flexibility since it does not predetermine
any of the factors but determines them freely as a combination of the basic factors.
However, for the same reason, this is also the option which leads to the longest searches.
Therefore, in many cases, the user option is the preferred option, which enables the
selection of basic factors among the really active factors corresponding to treatments or
blocks and appearing in the model or hierarchies. The basic factors are then entered in
the table appearing on the left-hand side of screen 2 (fig. 3) described later in further
detail.

By definition, all the combinations of levels of basic factors appear in the design, as
a result of which there cannot be any defining relation in which only these factors appear.
The selection of basic factors by the user thus excludes certain defining relations and is
likely to restrict the overall number of achievable solutions.

Consequently, when this user mode is selected, efforts are made from the outset to
choose basic factors for which all the combinations of levels are sought to appear in the
design. The fact that these factors are chosen as basic factors does not thereby introduce
any additional constraint.

For instance, if the units are structured by block systems (blocks, sub-blocks, rows,
columns, etc ... ), the corresponding block factors may be introduced, potentially com-
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pleted by a pseudofactor associated with the repetition number, as basic factors. Similarly,
in the search for a distribution into blocks of a full factorial design, the treatment factors
may be taken as basic factors, potentially completed by a pseudofactor associated with
the repetition number if the treatments are repeated.

In all cases, if only one solution is required, any choice of basic factors for which the
search completes is acceptable. It is only when the search fails that the question should
sometimes be raised as to whether such failure is not the result of a flawed selection of
basic factors.

5.4.1.4 Factor decomposition type . Option mazimum, minimum, free choice.

The factors which do not have a prime number of levels can be decomposed into products
of several pseudofactors. In all cases, decomposition must lead to pseudofactors whose
number of levels is a prime power. Nevertheless, there can be several decompositions of
this type as demonstrated in table 54 which provides the decompositions of a 24-level
factor A. The most comprehensive decomposition is obtained with option mazimum,

maximum minimum free choice
A; (2) A; (8) A; (4)

A, (2) A; (3) A, (2)

Az (2) A; (3)

Ay (3)

Table 54: Pseudofactor decomposition of a 24-level factor A

the standard option proposed by the program. All the pseudofactors obtained in this
decomposition have a prime number of levels. Option minimum is, on the contrary, that
which provides the most restricted number of pseudofactors. The numbers of pseudofactor
levels obtained in this option are the highest prime powers dividing the number of levels
of the decomposed factor. Option free choice allows to choose the decomposition used
for each factor, freely and independently. This choice is performed in screen 2 (fig. 3),
when the cursor is positioned on the factor to be decomposed, by clicking on the button
“pseudo-dec”. Failure to click results in maximum decomposition being chosen.

From a practical point of view, the standard option proposed, option mazimum,
provides the greatest flexibility. This is empirically observed and has been demonstrated
for certain classes of full factorial designs distributed into blocks [28], [29].

5.4.1.5 Backtrack search. To explain the meaning of the three associated parame-
ters random link, maz. nb. sol., time limit, here we concisely describe this search in a case
in which the numbers of levels are all powers of the same prime. A detailed description
of the general case is presented in [18].

The program initially establishes the lists £, Lo, ... , L, of possible vectors for each
of the columns 1, 2, ... s of the key matrix.

It then successively searches the columns of the key matrix so as to respect the
constraints imposed. Once columns 1 to ¢ which are compatible with the constraints
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have been selected, the permissible vectors are then inferred from list £;,;. If this set of
vectors is non-empty, the program selects the first vector as column ¢ + 1 and continues
in a sequence. If this set is empty, it selects the next permissible element, if there is one,
from list £;. If there is none, it reverts to the column 7z — 1 choice, and so forth.

When there is no solution, the procedure terminates when list £, is exhausted, which
means that all the possible choices have been examined. As this exhaustive analysis may,
in some cases, take a considerable time to achieve, a time limit is provided beyond which
the program terminates. The user then has the possibility of either continuing the search
by increasing the time limit or of effectively stopping the search.

It is clear that the order in which the lists £; are classified have a determining
influence on the choice of the key matrix in cases in which only one solution is sought.
To avoid obtaining the same solution systematically, it is possible to reorder these lists
randomly by introducing a random link different from 0. The value of this random link
in fact completely determines the random reordering of these lists and thus the solution
obtained. The same search performed with the same random link thus always leads to
the same solution.

In many cases, it is appropriate to search the set of solutions satisfying the con-
straints imposed for the best possible solution, for a criterion not taken into account in
the search. For instance, among all the fractions of resolution 4, that which has the
smallest possible number of interactions confounded is sought. In this case, it would be
appropriate to obtain all the possible solutions. For this purpose, a comprehensive search
is initiated by inserting the highest possible number, 999, in the field maz. nb. sol.. In
order to find all the solutions, the program then continues the search after obtaining a
solution, by moving, in list £, associated with the last column s of the key matrix, to the
next permissible element. If there is none, it returns to column s — 1 and selects the next
permissible element, and so forth. It terminates either when list £; is exhausted or after
the time limit has been reached.

The disadvantage of this comprehensive search procedure is that it can take a very
long time to achieve (particularly since, in this version of the program, symmetries between
factors are not taken into account to reduce the search time). Moreover, the solutions
obtained are often very close and quite often differ only by one of the columns of the key
matrix. Premature termination of the searches thus leads to an insufficiently diversified
set of solutions.

In order to obtain a range of markedly different solutions without performing the
comprehensive search, it is sufficient to request a reduced number of solutions (strictly
below 999 in any case) and to introduce a non-zero random link. In this case, we restart
the search procedure for each solution, by randomly reordering the lists £;. The solutions
obtained are stored in the .REG file and after analysis, a solution can be selected by its
number to explicitly construct the design. The random link associated with each of these
solutions also appears in the .OUT output file and it is therefore possible to obtain the
selected solution again in an isolated search.

The backtrack search thus uses the following three parameters.
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e random link. It determines the order in which a priori possible solutions are
explored for each column of the key matrix — lexicographic order if this random link
is zero and random if it is strictly positive. In the latter case, if 1 < nb. solutions <
999, this order is redefined for each search.

e max. nb. sol.. If it is equal to 999, the backtrack search continues until all the
solutions are obtained or until the time limit is reached. Such a comprehensive
search only has a chance of being completed for small-scale problems.

If 1 < nb. solutions < 999 and the random link is non-zero, the search is restarted
each time a solution has been found, with a new random order of exploration of
potentially usable columns.

e time limit. It should be borne in mind that it is always possible to interrupt the
search in progress by pressing ~ Attn (~ Break) and reducing this maximum time to
0 mn.

If this time limit is reached, the program proposes to extend it. However, in many
cases, the time limit is reached owing to the non-existence of a solution. In this
case, continuation of the search can take a considerable length of time because it is
necessary to explore all the possibilities in order to prove the absence of a solution.
In practice, it is therefore not advised to continue a search for too long.

5.4.1.6 Inclusion of factors in the ineligible set

The data for the model and part to be estimated makes certain defining relations ineligible,
that is to say, prevents these relations from being used to define the design. Nevertheless,
if the main effect of a factor does not appear in the part to be estimated, the search
may produce a defining relation in which only this single factor appears, of which only a
fraction of the levels then appears in the design. In certain cases this is not acceptable,
for instance if it is a block factor in which all the levels must be present.

The systematic inclusion of factors in the ineligible set, obtained by ticking the
corresponding box, makes any defining relation involving only a single factor ineligible
and thus ensures that each factor assumes all its levels in the design.

It is possible to impose this constraint only on certain factors, by unticking the
corresponding box and including these factors in a model with an associated empty part
to be estimated. The latter is interpreted as a part reduced to the general mean. The
terms of the model, which cannot be confounded with the general mean, are ineligible and
the factors included in this model must necessarily assume all their levels in the design.

5.4.1.7 Comment . Blank field providing several specifications on the design consid-
ered.

5.4.2 Screen 2 (fig. 3)

This screen contains 7 dialogue boxes. On the left-hand side are the tables in which the
lists of basic factors or added factors are introduced.
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On the right-hand side are 5 editing windows to introduce the model parts, models
and associated parts to be estimated, the hierarchies and finally, the predetermined factors.

5.4.2.1 Basic factors and added factors

Moving across the screen is achieved with the arrows or tabs as is usually done with
Windows. To introduce a new factor after (resp. before) the factor on which the cursor is
positioned, press enter <1 (resp. ~I). To delete the factor on which the cursor is positioned,
press Del.

In the third column of both these tables, it is possible to indicate (by ticking) which
are the block factors. This indication is not used in the backtrack search. It is only
used to distinguish between block effects and treatment effects in the study of aliases and
in the randomization phase. If the user has failed to specify the block factors in this
screen 2, it is still possible to do so before the randomization phase, but introducing the
information in screen 2 provides the benefit of clarifying the situation from the outset and
of facilitating the study of aliases.

The table of basic factors only appears when the option user is selected in screen 1
to define these factors. The considerations in the previous paragraph, in this case, provide
a common thread for the selection of these factors. It should be recalled that the product
of their numbers of levels, introduced in the second column of the table, must be equal
to the number of units appearing in screen 1.

The levels of the defined factors are deduced from those of the basic factors by using
the rules defined by the key matrix. This key matrix is sought through the backtrack
procedure so as to make the parts to be estimated in the associated models estimable and
to respect the potential hierarchies. Some of these factors can be predetermined by the
user. The associated columns of the key matrix are then determined in the search.

The remainder of this paragraph briefly recalls the functions and syntaxes of the
information entered in the windows appearing on the right-hand side of screen 2. A more
pedagogical introduction to these notions through examples is featured in paragraph 2
and more general descriptions may be found in [17], [18].

5.4.2.2 Models, part to be estimated, model parts: generalities. Generally, a
single model providing the non-negligible factorial effects is introduced. The “part to be
estimated’ of this model is then specified. To simplify the writing by avoiding rewriting
the same expression several times, model parts may also be introduced.

It must also be possible to indicate the hierarchy constraints among factors.

It may be necessary to introduce several models and corresponding parts to be
estimated, to deal with cases in which block systems induce several strata for instance.

A model is systematically completed by the terms included in the terms that appear
in it. Thus if A.B appears in it, A, B and the general mean are systematically included
by the program. This is not true for the “part to be estimated”. If they contain the term
A.B but not the terms A and B, this indicates that the interaction A.B is sought to be
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estimated, but not necessarily the main effects A and B. We will see that the use of the
constant factor 1 makes it possible to easily reintroduce the main effects among them
without burdening their writing.

A blank part to be estimated is interpreted as the general mean. The terms of
the associated completed model can therefore not be confounded with the general mean,
which precludes any defining relation based only on the factors of one of these terms.
These defining relations are ineligible.

The use of a blank part to be estimated particularly ensures that some products of
factors assume all their levels in the design: these products should merely appear in the
associated model.

Similarly, a blank model is interpreted as the general mean. The terms of the
associated part to be estimated can thus not be confounded with the general mean and
result in ineligible defining relations. In view of the fact that the part to be estimated
is not completed as the model, this use of a blank “model” provides greater flexibility
in introducing ineligible defining relations than the use of a blank in the “part to be
estimated”. If the set of ineligible terms has to be strictly reduced to the “part to be
estimated”, the model is left blank and the box inclusion of factors in the ineligible set
described in paragraph 5.4.1.6 is unticked if necessary.

To facilitate the writing of the model or of the part to be estimated, it is also possible
to delete certain terms. Deletion is indicated by the symbol ~. The syntax of the deleted
part on the right-hand side of the symbol ~ is the same as that of the model, but this
part is never completed by subterms. Recall that it may be necessary to type something
after ~ to make it effectively appear on the screen.

5.4.2.3 Models, part to be estimated, model parts: syntax. A model or model
part is a sum of terms, in which each term is a product of factors or pseudofactors
corresponding to a main effect or interaction. It should be noted that a space or . may
be used to separate the factors in a term.

Example : BL + VAR + DOSE + DENS + VAR.DOSE + VAR.DENS + DOSE.DENS (9)

The latter expression contains a block effect BL, the main effects and simple interactions
between the treatment factors VAR, DOSE and DENS. When it appears in a model line,
it can be replaced, taking into account the fact that the model is completed, by the
following simplified expression.

Exemple : BL + VAR.DOSE + VAR.DENS + DOSE.DENS

The writing may be simplified by the use of brackets. Thus the expression (9) is
also written

BL + (VAR + DOSE + DENS) (VAR + DOSE + DENS)

To revert to the 1st form, we develop then eliminate
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1. in each term the redundant factors (VAR.VAR — VAR),
2. then the redundant terms (VAR.DOSE + DOSE.VAR — VAR.DOSE ).

When the constant factor 1 is introduced in a product, it can be eliminated during
development in all the products containing it simultaneously with another factor. Thus

(1+ VAR + DOSE) DENS — DENS + VAR.DENS + DOSE.DENS .

Thus the term 1.DENS is replaced by DENS. This type of writing is not useful in
a model line since the models are automatically completed, but may be useful to define
the “part to be estimated”.

5.4.2.4 Use of model parts

The model BL + (VAR+DOSE+DENS) (VAR+DOSE+DENS)
can be rewritten in
the simplified form: BL + PM PM

as long as is introduced in the model parts the line
PM : VAR + DOSE + DENS

which defines PM as a model part.

A model part may include another one. For example, the definitions appearing on
the right- and left-hand side of the table below are equivalent

PM1 : VAR + DOSE PM1 : VAR + DOSE
PM2 : PM1 + DENS PM2 : VAR + DOSE + DENS
PM3 : PMI1.DENS PM3 : (VAR + DOSE).DENS

However, caution is required to avoid creating a loop in the definition of these model
parts, as in the example below in which the definition of P involves Q, whose definition
involves P.

P : Q+ DOSE
Q : P+ DENS

If such a loop is created inadvertently, the only solution is to interrupt the program by
pressing ~ Break (T Attn).

5.4.2.5 Substraction of terms In order to write a model containing all the two-
factor interactions with the exception of one or two, the “subtraction” operator ~ may
be used. The part on the right-hand side of this operator is developed by using the same
syntax as the model and terms obtained by this development are deleted. This part is
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never completed by the subterms, in contrast to the part appearing on the left-hand side
of ~ in the model specification.

Thus if PM designates the same model as previously, PM.PM ~ DOSE.DENS is
equivalent to the sum VAR.DOSE + VAR.DENS which, following completion by the
subterms, gives 1 + VAR 4+ DOSE 4 DENS + VAR.DOSE + VAR.DENS.

5.4.2.6 Hierarchies. If the level of a factor A must remain constant for each combi-
nation of levels of certain other factors, say B, C, D, the following row appears in the
hierarchies:

A:BCD

It is then said that the product factor B x C' x D is nested within A or, alternately, that
A is marginal to this factor.

Example. In a design containing blocks ~BL- and sub-blocks ~SBL-, the factor VAR
is constant for each block and the factor DOSE is constant for each sub-block. This
constraint is indicated by:

VAR : BL
DOSE : BL SBL

SBL provides the number of the sub-block within the block.

5.4.2.7 Example with several models and hierarchies. In a block design in which
certain factors cannot vary within blocks, it is often indispensable to introduce several
models and parts to be estimated as illustrated in the following, typical example.

Model parts Hierarchies
pl : A+B+C+D A : BL
p2 : A+4+B+C+D+E+F+G+H B : BL
C : BL
D : BL
Models Associated part to be estimated
(1] plpl [1] pl
[2] BL+p2 p2 2] p2 (E+F+G+H)

The part to be estimated p2(F + F' + G + H) of model 2 includes the main effects
of F, F, G, H and their interactions with each of the 8 treatment factors A, B, C, D, F,
F, G, H (i.e. 26 terms in developed form).

The main effects A, B, C'; D cannot be estimated in the model including the block
effect (BL) since they cannot vary within blocks. The pair model, part to be estimated 1
nevertheless ensures their estimability in an inter-block model including all the interac-
tions between two of these factors.
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5.4.2.8 How to force a product of factors to assume all its levels As has been
indicated, a product of factors can be forced to assume all its levels in the design by
making it appear as the term of a model with which a blank part to be estimated is
associated.

As an example let us consider a situation in which there are three treatment factors
A, B, C' with 6, 6 and 2 levels. We further assume that the 72 treatments of the full
factorial design must be distributed within a cube containing 6 positions on the X-axis,
3 on the Y-axis and 2 heights —factors X, Y, Z—. To illustrate this, we may imagine we
are cultivating 6 strains of champignons de Paris (button mushrooms) (factor A) with 6
different composts (B) with 2 pH values (C)and that these mushrooms are distributed
in the growth chamber over two overlapping trays (Z), each containing 6 rows (X), 3
columns (Y) with two containers in each location defined by X, Y, Z.

Taking into consideration the ventilation system and the position of the growth
chamber door, it is estimated that the three factors X, Y, Z are likely to have an effect.
We wish to be able to estimate the main effects A, B, C' and interactions A.C, B.C in a
model containing the additive effects X, Y, Z and all the interactions between treatment
factors.

If the basic factors used are X, Y, Z and U is the container number in the pair, we
can be sure that each of the 36 triplets of coordinates X, Y, Z appears twice. However,
if we use A, B, C as the basic factors, the following pair model, part to be estimated 1:

model part to be estimated
1] X+Y+Z+ABC [1]] A+B+C+AC+B.C

may result in defining relations in which all the triplets of coordinates X, Y, Z do not
appear, such as those in table 55.

2-lev. factor
X, 7
A 1 1| X, = ABC
B, 1 1 Z = AB;
C 1 0
3-lev. factor
Xe Yoy o A2B2
Ao 2 2 v = AR
B, 2 2 202

Table 55: An inappropriate solution to dispatch in 3 crossed block systems
In order to avoid such inappropriate relations, we introduce a model including the
term X.Y.Z associated with a blank (empty) “part to be estimated”:

model part to be estimated

2] X.Y.Z 2] (10)
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The choice of A, B, C as basic factors is quite natural. Firstly, it does not make
the introduction of an additional pseudofactor such as U compulsory. Secondly, this is
the option which is spontaneously used when seeking to find out, independently of any
program, the possible constructions. The question is then raised as to which interactions
between treatment factors each of the three block systems should be confused with, which
results in the block pseudofactors being defined from the treatments rather than the
reverse.

Remarks: if X, Y, Z are marked as block factors in the table of defined factors, the
program detects the key matrices for which all the combinations of levels of the block
factors are not present. This is an additional reason for indicating the block factors from
the outset.

5.4.2.9 Predetermined factors The following lines:

Bl_1 : A_1 + B_.1 + C_1
Bl.2 : A_2 + 2B_2
E : 202 + D

in the window with the predetermined factors set the way in which the pseudofactors Bl;,
Bl, inferred from factor Bl and factor E are calculated from the pseudofactors A;, B,
C1, Ay, By inferred from the basic factors A, B, C' and from factor D.

After checking that these definitions verify the constraints, the program takes them
into account in the search for the other factors.

It is possible to define all the factors in this way. This makes it possible to study of
aliases in a predetermined design or to construct and randomize this design.

5.5 Randomization

In agricultural experiments which have prompted the development of experimental designs
and the theory of randomization, it is generally recognized that the observation is the
sum of a treatment effect and of an uncontrolled effect of the experimental unit. In
order to prevent the effects of the experimental units from systematically overlapping
with the effects of the treatments being compared and from skewing the comparisons, the
experimental unit allocated to each treatment is chosen randomly: this is referred to as
randomization.

When all the units are equivalent, randomization is totally free. This is called
complete randomization. It consists of determining by random draw without replacement
the real unit (a plot in the field of agriculture, an animal in animal science, etc ... )
allocated to each unit of the systematic design. An example is provided in table 1. The
numbers resulting from the draw are called repetition indices and appear in a column
identified by the heading ind-rep.
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In this example, the number of units in the systematic design is equal to the maxi-
mum number of available units and randomization equates to randomly selecting a per-
mutation of numbers from 0 to 7, with the same probability of selecting each of the !8
permutations. This situation is frequent but it can also occur that the number of avail-
able units is greater than the number of units required — a situation which is taken into
account by introducing in the box total number of levels in screen 3 (fig.5) a mazimum
number of levels (maz.nb.lev.) equal to the number of available units.

When the experimental units are structured into blocks, randomization must com-
ply with this structure. This block structure is specified by the block factors. However,
the levels given to the latter factors in the systematic design are unrelated to the labels
or numbers of the real experimental units. Randomization, described below, results pre-
cisely in replacing these levels of the systematic design by the levels identifying the real
experimental units. This is achieved in such a way that all the units with the same block
factor level in the systematic design have the same level in the randomized design as a
result of this substitution. Randomization of the ROBOT1 design in § 3.1.4 provides an
example (tables 10 and 11).

Specification of the block factors is achieved through the randomization model.
These factors must have the ability to be expressed from a set of basic pseudofactors,
denoted block pseudofactors, which are such that the number of units per combination of
levels of these pseudofactors is constant. If this number of units is £ > 1, the program
introduces an additional block pseudofactor with k levels, the repetition index marked
ind-rep in short form, which specifies the unit number.

Figure 5 shows how the pseudofactors and basic factors can be indicated during
randomization by ticking the relevant box in column b/, in the box select blocks on the
left-hand side of the screen. A standard choice is proposed if the user has previously
specified which are the block factors in screen 2. The second box introduced following
validation of the left-hand side box during randomization makes it possible, when there are
more available blocks than effectively tested blocks, for this to be specified by modifying
the mazimum number of levels (maz.nb.lev.) that provide the numbers of available blocks
within which the choice is performed.

The randomization model then introduces the list of block factors expressed as a
product of pseudofactors and separated by +. The random link introduced finally initiates
the random drawing. The randomization performed is entirely determined by the random
link, which enables this to be performed again, identically: this only requires keeping the
same random link.

It should be noted that if the randomized file is lost, it can only be identically
recreated if the corresponding random link is known. In fact, the last random link to be
used is stored in the .PS file containing the systematic design and is proposed again in the
case of a new randomization. If a file with the same name and with a REG suffix exists,
the random link is also stored in it, through which the last randomization performed may
also be obtained again if the PS file has been lost.

In the example in figure 5, the block pseudofactors are the plate p/ and the column
col. For the purpose of the experiment, 6 plates are used and for each plate 4 columns
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are used. There is thus equality, in the second frame of screen 3, between the number of
levels and the mazimum number of levels. It would be otherwise if only 3 of the columns
were used in each plate. To choose these three columns randomly among the 4 columns
of each plate, it would then be necessary to replace the standard maximum number of
levels provided for the pseudofactor, 3, by 4.

The plate factor coincides with pseudofactor pl. Nevertheless, pseudofactor col has
no significance in this example if it is separated from factor pl. The columns are considered
here as a subdivision of the plates. There is a total of 6 x 4 columns. Each column is
specified by the number of the plate to which it belongs pl and its number col in this
plate. The randomization model thus comprises two terms, pl and pl.col, with the second
term corresponding to the column factor. Randomization is described for this particular
example in paragraph 3.1.4.

Another example is given on the right-hand side of screen 3 (fig. 5), where four
other block factors appear: rows (LIG) crossed with columns (COL), mini-rows nested
within rows (MINILIG) and micro-columns (MICROCOL) subdividing the cells formed
by intersection of the rows and columns (figure 7). In this example, the units are

| MINILIG
Ll
(0
MICROCOL
- (3)

T

Randomization model

LIG+COL+MINILIG.LIG+MICROCOL.LIG.COL

Partial order between pseudofactors

MINILIG < LIG {(2)< (0)}
MICROCOL < LIG  {(3)< (0)}
MICROCOL < COL {(3)< (1)}

Figure 7: Example of block structure (extracted from [4])

defined by the quadruplet of levels of the 4 pseudofactors LIG, COL, MINILIG, MICRO-
COL. The factors row, column coincide with the pseudofactors LIG, COL respectively.
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The factors mini-row and micro-column are defined by the products MINILIG.LIG and
MICROCOL.LIG.COL, respectively.

In the general case, the model is thus formed by the list of block factors which are
defined as products of the block pseudofactors.

The block pseudofactors which do not appear in the model introduced by the user
are automatically added. This makes it possible not to introduce a randomization model
if no products are to be introduced in the randomization model, which occurs when all
the block factors are crossed (no hierarchies) and in particular when there is only one
block factor.

When the number of units per combination of levels of pseudofactors is strictly
greater than 1 (K > 1), the program automatically adds a unit factor to the model,
product of ind-rep and of all the other pseudofactors.

From the model, completed, where applicable, by all the block pseudofactors, a
partial order is immediately inferred between the block pseudofactors. By definition,
A < B is obtained if every factor of the model containing A also contains B. In particular,
the repetition index, when it is introduced, is lower than all the other pseudofactors. This
order is often represented in the form of a diagram, termed Hasse diagram, such as that
which appears in figure 7.

In fact it is more precisely a preorder rather than an order because two distinct pseudofactors A
and As can be systematically associated thereby giving us both 4; < As and A; < A; without the
equality. However this situation, processed by the program by simply replacing each set of constantly
associated pseudofactors by their product pseudofactor, may be ignored.

The details of the randomization may be obtained by activating the option inter-
mediates outputs described in § 5.9, which is obtained from option Definition of standard
parameters in the general menu (tab. 53). An example of output thus obtained is dis-
played in table 14.

The structure of the block system for the latter example, represented in figure 6, may
be described by model coll + coll.col2 + rowl + rowl.row?2 to which the order col2<coll,
row2<rowl corresponds. The randomization program renumbers the pseudofactors in a
manner compatible with this order. More precisely, in cases in which certain factors
emerge as systematically associated in the terms of the model, first it determines the
classes of associated pseudofactors, then it renumbers these classes. Each class is here
reduced to a factor and the internal numbering used is 0 for col1, 1 for rowi, 2 for col2, 3
for row2. Note that if a class comprised more than one pseudofactor, the program would
replace the factors of this class by their product. It may thus always be considered in the
following that there is a single pseudofactor per class.

For each pseudofactor j, the list |j) = {i/i > j} of pseudofactors which are strictly
above it is determined. In the example, lists |0) and |1) associated with pseudofactors 0
(coll) and 1 (rowl) are empty. Lists |2) and |3) associated with pseudofactors 2 (col2)
and 3 (row2) contain factors 0 (coll) and 1 (rowl), respectively.

For each block pseudofactor j, the actual levels are determined by random drawing
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without replacement performed independently for each of the combinations of levels of
the higher pseudofactors, that is to say, the pseudofactors of |j). Thus for the column
pseudofactor col2, a separate draw is performed for each of the two macro-columns col1
=0 and coll = 1.

Determination of the actual level of the block pseudofactors for a unit of the system-
atic design is based on an ad hoc draw. The latter depends, for each pseudofactor, on the
levels of the higher pseudofactors. For instance, for the systematic design unit defined by
coll =1, rowl =1, col2 =0, row2= 0, determination of col2 in the randomized design is
based on the permutation of macro-column 1 since coll = 1. The information in table 14
reveals that the levels of the four pseudofactors in the randomized design are coll = 0,
rowl =0, col2 =1, row2 = 0.

The theory underlying this type of randomization is described in [4]. A simplified
description appears in [3]). From the results appearing in [4], it is easily inferred that
such randomization induces a covariance structure of the random effects of the units
identical to that of a classic model with random effects containing a random block effect
for each ancestral term (see [15]). Any product of pseudofactors which, when it contains
a pseudofactor A, also contains all the higher pseudofactors - i.e. all the B such as A < B
- is ancestral. In the classic model in question, the effects are all uncorrelated, and their
variance is constant for each effect.

To illustrate the latter point, let us consider again the different randomization models
already considered in this paragraph.

e Model pl + pl.col in figure 5. Each column of each plate contains 2 units and
the model is thus automatically internally completed by the term pl.col.ind-rep.
The three terms of the model pl + pl.col + pl.col.ind-rep thus completed are the
only ancestral terms. The model derived from randomization thus has a covariance
structure analogous to that of a model containing random effects of the plate, of
the column in the plate plus an error associated with each unit. The analysis of
variance of regular design normally includes a strata for each of these effects.

e Model LIG+COL+MINILIG.LIG+MICROCOL.LIG.COL is also provided as an
example in screen 3 (figure 5). The ancestral terms which make up the model
providing the covariance structure are the following:
LIG+COL+COL.LIG+MINILIG.LIG+MINILIG.LIG.COL+
+MICROCOL.LIG.COL+MICROCOL.LIG.COL.MINILIG

e Model coll+rowl-+coll.col2+rowl.row2 of § 3.2.1. The ancestral terms are:
coll + rowl + rowl.coll + col2.coll + col2.coll.rowl +
row2.rowl + row2.rowl.coll 4+ row2.rowl.col2.coll

Remark. Any addition or removal of factors in the randomization model which does not
modify the partial order between pseudofactors induces the same randomization. The
largest model that follows this order is that which contains all the ancestral terms. It
may be obtained by forming all the possible intersections between terms, to begin with,
followed by all the unions.
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It should be noted that the model may contain less terms than pseudofactors.
Thus factor LIG may be removed from model LIG + COL + MINILIG.LIG + MICRO-
COL.LIG.COL. The resulting model, COL + MINILIG.LIG + MICROCOL.LIG.COL,
induces the same partial order. In fact, the initial model is reobtained by adding the term
LIG, the only term common to the last two terms and therefore equal to their intersection:
LIG = {MINILIG, LIG} N {MICROCOL, LIG, COL}.

5.6 Recoding, selection of factors, sorting, ...

This module reads a design in a file with a .PS or .PR suffix and stores a certain number
of transformations to this design. The corresponding menu appears on the left-hand side
of figure 4. The proposed choices are the following:

Definition of product factors, recoding of the levels .................... new fact.
Elimination of (pseudo)factors ............ .. ... i, sel. fact.
Ascending sorting of one or several factors ............................ sorting
Repetition of certain points ........... ... repetition
Consecutive addition of another design with the same factors ......... merging fic.
Writing of the resulting file with a/ the actual levels .................. writing

b/ the numbers of levels ....................... write nb.

Storage of the resulting file in the form of an internal file with the same save
suffix Such storage enables re-reading at a later stage for randomization
(case of a .PS file), changing the labels of the factor levels, etc ...

5.6.1 Creation of new factors (fig. 4)

This choice enables the creation of product factors and coding of their levels by aggregating
some of the latter if necessary. It particularly enables recoding of a factor, potentially, by
aggregating certain levels.

The syntax for creating a product factor is simple. The name of the new factor,
followed by the sign (:) and the list of old factors from which it is formed are indicated
on a line of the window Definition of new factors. To facilitate the users task, the list of
old factors appears in another window.

For instance, if the already existing factors are
Prod Temp pH Bloc

it is possible to change the levels of factor Prod and to define a product factor TempxpH
by typing in the definition window:

Tp : Temp pH
Prod : Prod
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The “levels” button is pressed to redefine the levels of the factor on which the cursor
is positioned. If this is omitted, the program uses sequential numbering 0, 1, 2, ...

5.7 Study of aliases

Once the key matrices responding to specifications are obtained, the aliased effects for
all or part of the solutions may be found through option study of aliases in the general
menu (table 53). This option makes screen 6 of figure 8 appear, in which the model used
is defined. The proposed model is that which was previously introduced for searching the
design (or the models). It is possible to modify it as well as the model parts in the two
boxes at the top of screen 6.

The study of aliases differentiates the treatment factors from the block factors,
marked by an arrow at the bottom of screen 6 of figure 8. It is thus important, in order to
have outputs adapted to the problem posed, to indicate beforehand which are the block
factors in the boxes appearing on the left-hand side of screen 2 (figure 3).

Examples of outputs in the study of aliases abound in this manual. We will refer in
particular to § 2.2.2, 2.3.2. The example of § 3.3.2 illustrates how knowledge of aliases is
used to choose a good solution.

Il PLANOR : search for regular designs g@@

Parts of model
[1] p:n-sou+g-sou+c-bat+T-act+conc+hross+rug+hat

Model (s)
[1] pl.lig2 4 p p
[2] pl.coll.col2.lig2

Factors (bklock: +]
nat rug bkross ceonc T-act c-bat g-sou n-sou col2+ colle lig2e ligl+ pl

0K End Help

Put the curser on the sslected model and validats
You can first medify the proposed meodel

Figure 8: Selecting the model to study the aliases. Screen 6
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5.8 Content of .REG files of the active directory

This option provides information on the contents of all the .REG files of the active direc-
tory which is that which appears at the top of initialization screen 5 (figure 9).

5.9 Definition of standard parameters

This option of the general menu displays screen 5 appearing in figure 9, whose fields are
described as follows.

Il P| ANOR. Definition of standard parameters E“E]@

active directony | C:\kobiakplanonyinotreg other selection

name of the experiment  [ERGen=ce] ather zelection

page width onoutput fles [g0 [0 lines are not truncated]
intermediate printoutz - [

zpecial characters kept in the output [

reference number | [Rll at first u=e]

0, End Local help

Figure 9: Definition of standard parameters, screen 5

Active directory: directory path which contains all the files read or created by the
program. It may be freely modified before each new study.

Name of the experiment. This name is used, with an ad-hoc suffix, for all the specific
files created in the study (REG, PS, PR, HIS, HIR files). It is also proposed with the
OUT suffix as the standard name for the results files. This name is updated after each
use of the program and therefore always refers back to the last design implemented.

Page width on output files. Provides the maximum width of the lines in the results
files. Lines exceeding this width are split. The symbol > is used to indicate that a
line is the continuation of the preceding line. The matrices are sectioned into blocks
to facilitate reading.

Width 0: the lines are not split and may be of any width. The integrated editor,
similarly to most classic editors, makes it possible to read without any difficulty the
part of the text exceeding the width of the screen, but the results files cannot be
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printed without prior modification in cases in which the results file contains matrices
which are too large.

Intermediate outputs. These outputs will only be of interest to specialists wishing to
better understand the key matrix search algorithm described in [18].

special characters kept in the output. Certain characters (6, a , <, ..., ) may
pose problems during printing. If the box is not ticked, these symbols are replaced by
standard symbols (e, a, < or =, ... ).

Reference number. Each user is attributed a personal reference number with 12 digits
which must be introduced the first time PLANOR (or ANALYS) software is used on
a microcomputer.

5.10 Content of REG, PS, PR, HIS, HIR files
5.10.1 .REG files

Records 1 and 2 contain the information in screen 1, and records 3, 4, 5 contain the
information introduced in screen 2 and its ancillary screens, and also modrand and RL-
RAND from screen 3. The variables contained in records 6 and 7 are inferred from all this
information. Finally, record 8 contains mainly key matrices resulting from the search.

In the following, the list of variables contained in each record, then the content of
these variables, is provided. Some of these variables are what are referred to in APL as
generalized tables (structures in other languages) which may for instance contain several
matrices of different sizes.

With regard to the names of variables, the suffix f refers to a factor, the suffix p
refers to a pseudofactor, the suffix u refers to a basic factor or pseudofactor (u for unit),
the suffix ¢ to a defined factor or pseudofactor (¢ for treatment).

The order of arrangement of the factors and pseudofactors in the REG file is the
reverse of the introduction order, modified to take into account the hierarchies and prede-
fined factors. The algorithm of the backtrack search in fact proceeds in decreasing order
of the factor or pseudofactor numbers, which requires classification within the program
of any factor or pseudofactor to be defined before those which serve to define it.

Let us recall that the factors initially introduced are first decomposed into pseudo-
factors with a prime power number of levels. The labels of those of these factors which
appear on the right-hand side of screen 1 (i.e. in the models, parts to be estimated, hier-
archies, predefined factors) are stored in LIBft. The associated primes and exponents in
these decompositions are provided by the variables Ppt and Ept.

For the key matrix search, it is appropriate to reorder the pseudofactors according
to the prime which divides their number of levels, which produces lists LIBmug, LIBnug.
In order to subsequently switch from the LIBnug pseudofactors to the factors appearing
in LIBft, the order numbers contained in NOnug are used.
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Record 1
Record 2
Record 3
Record 4
Record 5
Record 6
Record 7
Record 8

NBUNIT
CHOIXfu

CHOIXdf

TMAX
NBSOL
RLINK

comEXP
FACINEL

LIBfu
NIVfu
BLOCfu
LIBNfu
NIVpsu

Variables in REG file

NBUNIT CHOIXfu CHOIXdf

TMAX NBSOL RLINK comEXP FACINEL

LIBfu NIVfu BLOCfu LIBNfu NIVpsu

LIBf NIVf BLOCf LIBNf NIVps modrand RLRAND
pmod mod esta hieralpha pd

BLOCIHt LIBft NIVft Npft LIBpt Ppt Ept
BLOCnug NOnug LIBmug LIBnug Pg mug nug
INDPT RLINKS {fUg fUss

Record 1 : top of screen 1

nb. of units

option used to define the basic pseudofactors

1: standard choice (2_1, 2_2, 3_1, etc ... )

2: user

decomposition type of factors into pseudofactors
1: maximal. Example 36 — 2x2x3x 3

2: minimal. Example 36 — 4 x 9

3: any other choice. Example 36 — 4 x 3 x 3

Record 2 : bottom of screen 1

maximum time in mn for the Backtrack search

nb. of solutions searched (999 = all the solutions)

random link defining the random exploration order of the different pos-
sibilities for the factors to be defined

comment

inclusion of factors in ineligible set (1 yes, 2 no)

Record 3 : screen 2, basic factors.

labels of the basic factors (reverse of the introduction order)
corresponding numbers of levels

block factor indicator

labels of the levels

decomposition of the levels introduced by the user when CHOIXdf=3.

Record 4 : screen 2, added factors + screen 3, modrand, RLRAND.

LIBf
NIVE
BLOCTt
LIBNf
NIVps
modrand

RLRAND

labels of the defined factors

nb. of corresponding levels

block factor indicator

labels of the levels

decomposition of the levels introduced by the user when CHOIXdf=3
randomization model specifying the block system structure (introduced
in screen 3)

random link used for the randomization
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pmod
mod

esta
hieralpha
pd

BLOCft
LIBft

NIVt
Npft
LIBpt
Ppt, Ept

BLOCnug
NOnug
LIBmug
LIBnug

mug
nug

INDPT

RLINKS
fUg
fUss

Record 5: screen 2, right part

parts of model

model(s)

associated part(s) to be estimated
hierarchies

predetermined factors

Record 6 : factors at the top of the key matrix columns

indicator of the block factors in LIBft

sublist of basic factors or factors to be defined appearing in the model(s),
part(s) to be estimated, hierarchies or predefined factors. The associated
pseudofactors are those appearing in the key matrix column.

associated number of levels

number of pseudofactors per LIBft factor

labels of pseudofactors associated with the LIBft elements

associated primes, exponents in the decomposition into pseudofactors of
each factor appearing in LIBft.

Record 7 : lists per prime.

indicator of the block factors in LIBnug

numbers of the LIBnug pseudofactors in LIBft.

lists per prime of the unit pseudofactors

lists per prime of the treatment pseudofactors

distinct primes dividing one of the numbers of levels

exponents of the primes in the nb. of levels of the unit pseudofactors
exponents of the primes in the nb. of levels of the pseudofactors to be
defined.

Record 8 : results of the search.

1 if the key matrix parts associated with the different primes can be
chosen independently, 0 if this is not the case

random link(s) used to find the solution(s)

fixed parts of the key matrices associated with the different primes
non-fixed parts of the key matrices for the different solutions.

As a general rule, fUss contains one item per solution, an item formed
by the key matrices associated with the different primes.

However, if INDPT=1, if the search is comprehensive (NBSOL=999),
and if several primes are involved, fUss contains an item per prime — an
item formed by the set of solutions obtained for this prime. In this case
it is possible to choose freely, for each prime, one of the solutions found.
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5.10.2 PS and PR files

Records 1, 2, 3 of the PS (Systematic Design) files and PR (Randomized Design) have
the same content, described as follows. It should be noted that in the PLAN variable
containing the design per se, the levels are provided by their number counted from 0. The
corresponding labels appear in the variable LIBN{.

The PS files contain two additional records. Record 4 contains useful information
to randomize the design, in particular, if the design has already been randomized, the
randomization model and the random link introduced. Record 5 gives the information
providing insight into which key matrix was used to construct the design in cases in which
the file was obtained directly from a REG file in which several solutions are stored.

Record 1
Record 2
Record 3

LIBf
PLAN
NIVE

BLOCt
LIBNf

Record 4
Record 5

PSEUDO
NDELTA

modrand

RLRAND

Pg
INDPT

NBSOL
NUM

Content of the 3 first records of PS and PR files

LIBf
PLAN
NIVf BLOCf LIBNf

Variables in the 3 first records of PS and PR files

labels of the factors and pseudofactors associated with the columns of
the design

experimental design. The levels are identified by their number counted
from 0, i.e. 0, 1, ...

number of levels of the factors and pseudofactors.

indicator of the block factors.

lists of labels of levels.

Content of the complementary records 4 and 5 of PS files

PSEUDO NDELTA modrand RLRAND
Pg INDPT NBSOL NUM

Detail of record 4 in a PS file

list of the block pseudofactors used for randomization.

provides, for each block pseudofactor, the total number of levels among
which the effectively used levels are randomly drawn

model describing the block structure

random link used for randomization

Detail of record 5 in a PS file

list of primes

indicates if the key matrices associated with the different can be chosen
independently (INDPT=1) or not (INDPT=0).

number of solutions required (exhaustive search if NBSOL=999).
number of the solution or numbers for the different primes in the case
NBSOL=999, INDPT=1.
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5.10.3 HIS and HIR files

It should be recalled that each PS or PR file is associated with a file with an HIS or HIR
suffix in which the modifications performed by the option Recoding, selection of factors,
sorting, ... in the general menu (table 53) are saved. Each record of this file gives
the code of the operation performed, then the indications on the basis of which it was
performed.

Example:
LEC TEST1.PS Reading of file TEST1.PS
NEW ab:a b Definition of a new ab factor as the product of factors a and b.
SEL ¢ Selection of factors: elimination of factor c.
TRI de Sorting of the units on d, then on e for a constant d.
REP 5 6 unit 5 duplicated, unit 6 is deleted.

2 0

FUS TEST2.PS file TEST2.PS is added consecutively, keeping only the common

factors.
SAV  TEST1A.PS modified filr saved under the name TEST1A.PS.
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List of .REG files associated with the examples in the manual

ex333.reg §2.2.1
ex664.reg §2.3.1
robotla.reg §3.1.2
robotlb.reg §3.1.2
robpllrd.reg §3.2.1
robpllrb.reg §3.2.2
essai.reg § 3.3
robpl2rb.reg §3.3.1
robpl2rd.reg §3.3.2
rop2fdrb.reg § 3.3.3
essail.reg §3.34
rop2fdrd.reg §3.3.4
hygienl.reg §4.1.4
hygien2.reg §4.1.4
hygien3.reg §4.1.4
hygiend.reg §4.1.4
quantl.reg §4.2.2
quant2.reg §4.2.3.1
rhizo6.reg §4.2.3.2
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