
Package ‘planor’
May 19, 2019

Type Package

Title Generation of Regular Factorial Designs

Version 1.5-1

Date 2019-05-19

Author Hervé Monod, Annie Bouvier, André Kobilinsky

Maintainer Hervé Monod <herve.monod@inra.fr>

Description Automatic generation of regular factorial designs, including fractional designs, orthogo-
nal block designs, row-column designs and split-plots. Kobilinsky, Monod and Bai-
ley (2017) <doi:10.1016/j.csda.2016.09.003>.

License GPL (>= 2)

Imports stats, conf.design, utils, bit64, Rcpp (>= 0.12.7)

LinkingTo Rcpp, RcppArmadillo

Depends methods

Collate zzz.R generic.R designfactors.R keymatrix.R keyring.R
listofkeyrings.R planor.R basep.R randomize.R designkey.R
listofdesignkeys.R planordesign.R makedesignkey.R

Encoding UTF-8

URL <http://genome.jouy.inra.fr/logiciels/planor>

R topics documented:
planor-package . 2
alias-methods . 3
as.data.frame.planordesign . 5
bind-methods . 5
designfactors-class . 6
designkey-class . 7
getDesign-methods . 8
keymatrix-class . 9
keyring-class . 10
listofdesignkeys-class . 11
listofkeyrings-class . 12
makedesignkey . 13
pick-methods . 14
planor.design-methods . 15

1

http://genome.jouy.inra.fr/logiciels/planor>

2 planor-package

planor.designkey . 16
planor.factors . 18
planor.harmonize . 19
planor.model . 20
planor.randomize . 21
planordesign-class . 22
regular.design . 23
show-methods . 25
summary-methods . 26

Index 29

planor-package Generation of Regular Factorial Designs

Description

A package dedicated to the automatic generation of regular factorial designs, including fractional
designs, orthogonal block designs, row-column designs and split-plots.

Details

The user describes the factors to be controlled in the experiment and the anova model to be used
when the results will be analysed. He or she also specifies the size of the design, that is, the number
of available experimental units. Then planor looks for a design satisfying these specifications and
possibly randomizes it. The core of the algorithm is the search for the key matrix, an integer matrix
which determines the aliasing in the resulting factorial design.

The user may use the function regular.design where all these steps are integrated, and trans-
parent by default. Alternatively, the steps can be decomposed by using successively the functions
planor.factors, planor.model, planor.designkey and planor.design. For the expert user,
the function planor.designkey can give several key matrix solutions. Alias and summary meth-
ods allow to study and compare these solutions, in order to select the most appropriate one for the
final design.

Note

An R option named planor.max.print is set. It is equal to the number of printed rows and columns
in the display of planor matrices. Default is 20. You can change its value by using the function
options() (see ?options).

Author(s)

Monod, H. and Bouvier, A. and Kobilinsky, A.

References

See citation("planor").

alias-methods 3

Examples

DESIGN SPECIFICATIONS
Treatments: four 3-level factors A, B, C, D
Units: 27 in 3 blocks of size 9
Non-negligible factorial terms:
block + A + B + C + D + A:B + A:C + A:D + B:C + B:D + C:D
Factorial terms to estimate:
A + B + C + D
1. DIRECT GENERATION, USING regular.design
mydesign <- regular.design(factors=c("block", LETTERS[1:4]),

nlevels=rep(3,5), model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, randomize=~block/UNITS)

print(mydesign)
DUMMY ANALYSIS
Here we omit two-factor interactions from the model, so they are
confounded with the residuals (but not with ABCD main effects)
set.seed(123)
mydesigndata <- mydesign@design
mydesigndata$Y <- runif(27)
mydesign.aov <- aov(Y ~ block + A + B + C + D, data=mydesigndata)
summary(mydesign.aov)
2. STEP-BY-STEP GENERATION, USING planor.designkey
F0 <- planor.factors(factors=c("block", LETTERS[1:4]), nlevels=rep(3,5),

block=~block)
M0 <- planor.model(model=~block+(A+B+C+D)^2, estimate=~A+B+C+D)
K0 <- planor.designkey(factors=F0, model=M0, nunits=3^3, max.sol=2)
summary(K0)
mydesign.S4 <- planor.design(key=K0, select=2)

alias-methods Summarize the Design Properties

Description

Methods to summarize the design properties of an object containing key matrices. Display the
design keys matrix(ces) and the factorial effects confounded with the mean.

Usage

S4 method for signature 'designkey'
alias(object, model, ...)

S4 method for signature 'keymatrix'
alias(object, model, fact, block, ...)

S4 method for signature 'listofdesignkeys'
alias(object, model, ...)

S4 method for signature 'listofkeyrings'
alias(object, model, ...)

S4 method for signature 'planordesign'
alias(object, model, fact, block, ...)

4 alias-methods

Arguments

object an object of the class.

model an optional model formula (by default the first model in object) or, when object
is a keymatrix, a matrix representing factorial model terms.

fact a character or numeric vector of parent factor names for the columns of object.

block a logical vector to identify the columns of object associated with a block factor.

... ignored.

Details

When object is a keymatrix, “alias” displays the key matrix and the factorial effects confounded
with the mean. It prints the unaliased treatment effects, then the groups of aliased treatment effects,
then the treatments effects confounded with block effects and finally the unaliased block effects,
when considering all the factorial terms that are represented in the model argument, which is set if
missing to the identity matrix (main effects only).

Value

• When object is a keymatrix, a vector with (i) the number of unaliased treatment effecs; (ii)
the number of mutually aliased treatment effects; (iii) the number of treatment effects aliased
with block effects.

• When object is a designkey, an invisible NULL.

• When object is a listofkeyrings, the factors, the model and the number of solutions for
each prime in a list indexed by the primes p of the object. Each element is a 3-column matrix
with one row per solution for prime p. The columns give (i) the number of unaliased treatment
effecs; (ii) the number of mutually aliased treatment effects; (iii) the number of treatment
effects aliased with block effects.

• The method is NOT YET IMPLEMENTED on objects of class listofdesignkeys.

• When object is a planordesign, this function is the alias method applied on each of the
keymatrix objects contained in its designkey slot.

Examples

Creation of an object of class listofkeyrings
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),
model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)
alias on an object of class keymatrix
alias(K0[[1]][[1]])
alias on an object of class designkey
alias(K0[1])
alias on an object of class listofkeyrings
alias(K0)

as.data.frame.planordesign 5

as.data.frame.planordesign

Data Frame Coercion

Description

Method to extract the dataframe containing the final design from a planordesign object, i.e the
slot design. The other slots are stored in attributes.

Usage

S4 method for signature 'planordesign'
as.data.frame(x, ...)

Arguments

x an object of class planordesign.

... ignored.

Value

A data frame with attributes factors, model, designkey, nunits, recursive.

Examples

Creation of a planordesign object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

P0 <- planor.design(key=K0, select=1)
Convert into a data frame
D0 <- as.data.frame(P0)

bind-methods Bind Two Objects

Description

Methods to bind two objects of the same class.

Usage

S4 method for signature 'designfactors,designfactors'
bind(x, y)

Arguments

x an object of the first class in the signature.

y an object of the second class in the signature.

6 designfactors-class

Value

An object of the same class as x and y, containing their joint content.

Note

Factors with same name are distinguished and advertised with a warning.

See Also

Class where this method applies: designfactors

Examples

F1 <- planor.factors(factors=c("block",LETTERS[1:4]), nlevels=c(6,6,4,2,6))
F2 <- planor.factors(factors=c("block",LETTERS[11:12]), nlevels=c(6,6,4))
Method bind on designfactors objects
F3 <- bind(F1,F2)
names(F3)

designfactors-class Class designfactors

Description

An S4 class to represent the design factors and store their characteristics.

Objects from the Class

Objects from this class can be created explicitly by calls to planor.factors or implicitly by func-
tions such as planor.designkey.

Slots

fact.info a dataframe with one row per factor and with columns progressively storing information
on the factors, in particular their numbers of levels (nlev).

pseudo.info a dataframe with one row per pseudofactor and with columns progressively storing
information on the pseudofactors.

levels a list of numeric or character vectors, with each vector containing the levels of one factor.

Methods

[extract a subset of factors and update all the slots.

bind bind two objects. See bind method.

length return the number of factors.

names return the names of the factors.

designkey-class 7

Details

Depending on the context and on the construction stage, fact.info may contain logical columns
that identify the block factors (block), the ordered factors (ordered), the basic factors (basic) and
so on. It may also include columns that store the information on the hierarchy relationships between
factors, if any.

In package planor, factors are systematically decomposed into pseudofactors which all have a
prime number of levels and which play a key role in the design generation. The information on
the pseudofactors is stored in the pseudo.info slot. In addition to the columns of fact.info, it
contains a column (called parent) to give the factor that each pseudofactor decomposes.

Author(s)

Monod, H. and Bouvier, A.

See Also

Creator function: planor.factors

Examples

F1 <- planor.factors(factors=c("block",LETTERS[1:4]), nlevels=c(6,6,4,2,6))
F2 <- planor.factors(factors=c("block",LETTERS[11:12]), nlevels=c(4,6,6))
Method bind - a warning will be issued because two factors
in F1 and F2 have the same name
F3 <- bind(F1,F2)
names(F3)
length(F3)
F3@levels
F3.trt <- F3[c(2:5,7,8)]
names(F3.trt)

designkey-class Class designkey

Description

An S4 class to represent a design-key solution.

Objects from the Class

Objects can be created by extraction from an object of class listofkeyrings or class listofdesignkeys.

Slots

.Data a single design-key solution, i.e a list with one keymatrix per prime.

factors an object of class designfactors which contains the factors specifications.

model a list which contains the model and estimate specifications.

nunits the number of units of the design.

recursive a logical equal to TRUE if the design has been constructed recursively.

8 getDesign-methods

Extends

Class list, from data part. Class vector, by class list, distance 2.

Methods

alias summarize the design properties. See alias method.

planor.design build the design from the design key matrix. See planor.design method.

show display the object. See show method.

summary summarize the design properties. See summary method.

Author(s)

Monod, H. and Bouvier, A.

Examples

Creation of a designkey object
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),

model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

print(K0[1])

getDesign-methods Extract a Design

Description

Methods to extract a design data frame from an object.

Usage

S4 method for signature 'planordesign'
getDesign(object)

Arguments

object object of the class.

Value

A data frame which contains the design.

Note

Applied on a planordesign object, it is the same as function as.data.frame, without returning
any attributes.

See Also

Class where this method applies: planordesign.

keymatrix-class 9

Examples

Creation of a planordesign object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),

nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

P0 <- planor.design(key=K0, select=1)
Method getDesign on the planordesign object
show(getDesign(P0))

keymatrix-class Class keymatrix

Description

An S4 class to represent an elementary key matrix.

Objects from the Class

Objects from this class are usually components of an object of class keyring or designkey.

Slots

.Data a matrix of integers modulo p.
p a prime number.

Extends

Class matrix, from data part. Class array, by class matrix, distance 2. Class structure, by class
matrix, distance 3. Class vector, by class matrix, distance 4, with explicit coerce.

Methods

alias give the aliasing relationships of the key matrix. See alias methods.
show display the object. See show methods.
summary summarize the design properties. See summary methods.

Author(s)

Monod, H. and Bouvier, A.

See Also

keyring, designkey

Examples

showClass("keymatrix")
Creation of a listofkeyrings object
K0 <- planor.designkey(factors=c("block", LETTERS[1:4]), nlevels=rep(3,5),

model=~block + (A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

Show a keymatrix of K0
show(K0[[1]][[1]])

10 keyring-class

keyring-class Class keyring

Description

An S4 class to represent a list of design-key matrices which are associated with the same prime and
which represent alternative solutions to the same design specifications.

Objects from the Class

Each component of the structure returned by planor.designkey is a keyring object when the case
is not recursive.

Slots

.Data a list of keymatrix objects.

p a prime number.

LIB a list containing a vector of row names and a vector of column names. The names are the same
for all key matrices.

pseudo.info a dataframe containing information on the pseudofactors associated with the key ma-
trices. See the description of the class designfactors.

Extends

Class list, from data part. Class vector, by class list, distance 2.

Methods

show display the object. See show method.

summary summarize the design properties. See summary method.

Note

Each key matrix in a keyring object is a possible solution to the same factors, model and estimate
specifications, with respect to the same prime number. An object of class listofkeyrings is a
list of keyring objects associated with the different primes involved in a given factorial design
problem.

Author(s)

Monod, H. and Bouvier, A.

See Also

planor.designkey, methods pick.listofkeyrings and summary.keymatrix, the class keyring

listofdesignkeys-class 11

Examples

showClass("keyring")
Creation of a listofkeyrings object
K0 <- planor.designkey(factors=c("block", LETTERS[1:4]), nlevels=rep(3,5),

model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

Show a keyring component of K0
show(K0[[1]])

listofdesignkeys-class

Class listofdesignkeys

Description

An S4 class to represent a list of design key solutions.

Objects from the Class

Objects are created by planor.designkey, when the search is recursive.

Slots

.Data a list of objects of class designkey.

factors an object of class designfactors which contains the factors specifications.

model a list which contains the model and estimate specifications.

nunits the number of units in the design.

Extends

Class list, from data part. Class vector, by class list, distance 2.

Methods

alias NOT YET IMPLEMENTED.

[extract one design key in the list.

pick extract one design key in the list. See pick method.

planor.design build a design from one design key in the list. See planor.design method.

show display the object. See show method.

summary summarize the design properties. See summary method.

Author(s)

Monod, H. and Bouvier, A.

See Also

Creator function: planor.designkey

12 listofkeyrings-class

Examples

showClass("listofdesignkeys")
Creation of a listofdesignkeys object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Method show
show(K0)
Method length
length(K0)
Extract component. The two following two commands are equivalent
K <- K0[2]
K <- pick(K0,2)

listofkeyrings-class Class listofkeyrings

Description

An S4 class to store design key solutions when there is only one prime involved or when the solu-
tions are independent between primes.

Objects from the Class

Objects are created by planor.designkey, when the case is not recursive.

Slots

.Data a list of objects of class keyring associated with different primes.

factors an object of class designfactors which contains the factors specifications.

model a list which contains the model and estimate specifications.

nunits the number of units of the design.

Extends

Class list, from data part. Class vector, by class list, distance 2.

Methods

alias give the aliasing for each key-matrix. See alias method.

[extract one design key by taking one key matrix per prime.

pick extract one design key by taking one key matrix per prime. See pick method.

planor.design build a design using one key matrix per prime. See planor.design method.

show display the object. See show method.

summary summarize the design properties from object. See summary method.

Author(s)

Monod, H. and Bouvier, A.

makedesignkey 13

See Also

Creator function: planor.designkey

Examples

showClass("listofkeyrings")
Creation of a listofkeyrings object
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),

model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

show(K0)

makedesignkey Turn Integer Matrices into an Object of Class designkey

Description

Create an object of class designkey from a list of integer matrices.

Usage

makedesignkey(keys, primes)

Arguments

keys a list of n integer matrices with column names.

primes a vector of n prime numbers.

Details

The names of the factors are extracted from the matrix column names.

Value

An object of class designkey.

Author(s)

Monod, H.

Examples

mat1 <- cbind(diag(3),1)
colnames(mat1) <- c("A","B","C","D")
mat2 <- cbind(diag(2),c(1,2))
colnames(mat2) <- c("E","F","G")
mat.dk <- makedesignkey(list(mat1,mat2), primes=c(2,3))
print(mat.dk)
summary(mat.dk)
alias(mat.dk)
mat.plan <- planor.design(mat.dk)

14 pick-methods

pick-methods Extract a Single Result from a List

Description

Methods to extract a single designkey object (with one key matrix per prime) from a multi-
components object.

Usage

S4 method for signature 'listofdesignkeys'
pick(keys, selection)
S4 method for signature 'listofkeyrings'
pick(keys, selection)

Arguments

keys an object of the class.

selection • when keys is a listofdesignkeys object, an integer scalar equal to the
position of the required solution.

• when keys is a listofkeyrings object, the index vector to select the key
matrix for each prime.

Value

An object of class designkey, which contains the selected design.

Note

pick(K0,1) can be simply written K0[1]

See Also

Classes where this method applies: listofdesignkeys, listofkeyrings.

Examples

Creation of an object of class listofdesignkeys
K2 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2 , nunits=12,
base=~R+C+U, max.sol=2)
Method pick applied on the listofdesignkeys object
K2.1 <- pick(K2,1)
K2.1 <- K2[1] ## Another way of extracting ([is synonym of pick)

Creation of an object of class listofkeyrings
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"),
nlevels=rep(3,5), model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)
Method pick applied on the listofkeyrings object
K0.1 <- pick(K0,1)
K0.1 <- K0[1] ## the same

planor.design-methods 15

planor.design-methods Build a Design from a Design Key Solution

Description

Methods to build a factorial design from an object containing key matrices.

Usage

S4 method for signature 'designkey'
planor.design(key, randomize=NULL, ...)

S4 method for signature 'listofdesignkeys'
planor.design(key, randomize=NULL, selection=1, ...)

S4 method for signature 'listofkeyrings'
planor.design(key, randomize=NULL, selection,...)

S4 method for signature 'numeric'
planor.design(key, start=1)

Arguments

key an object of the first class in the signature, or a vector of integers.

randomize an optional formula to specify the block structure for design randomization.

selection when key is a listofdesignkeys object, an integer scalar.
when key is a listofkeyrings object, should be an index vector to select the
key matrix for each prime.

... additional arguments, in particular those related to randomization (see planor.randomize).

start an integer from where to start the series of symbols.

Details

• When key is numeric, it should be a vector of integers of length s. Then, the function gen-
erates a full factorial n1xn2x...xns design with columns considered as factors. It returns an
integer matrix with prod(n) rows and s columns giving all combinations along the rows, in
lexicographic order.

• When key is a listofdesignkeys object, build one design from a selected solution.

Value

An object of class planordesign, which contains the design built from the input. This function is
restricted to give a single design. When key is numeric, see Details.

See Also

Classes where this method applies: designkey, listofdesignkeys, listofkeyrings.

16 planor.designkey

Examples

Creation of a listofdesignkeys object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Method planor.design applied on the listofdesignkeys object
P0 <- planor.design(key=K0, select=1)
Method planor.design applied on a designkey object
P0 <- planor.design(K0[1])

Creation of a listofkeyrings object
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),
model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2, verbose=TRUE)
Method planor.design applied on a designkey object
P0 <- planor.design(K0[1])
P0.R <- planor.design(K0[1], randomize=~A+B+C+D) # randomize the final design

planor.designkey Search for a Design Key or a Collection of Design Keys

Description

Search for a design key or a collection of design keys that satisfy the design properties specified by
the arguments. This function implements the core algorithms of the planor package.

Usage

planor.designkey(factors, nlevels, block, ordered, hierarchy, model,
estimate, listofmodels, resolution, nunits, base, max.sol=1,
randomsearch=FALSE, verbose=TRUE)

Arguments

factors an object of class designfactors, typically an output from planor.factors.
Alternatively, you can use the arguments factors, nlevels, ordered, hierarchy
as described in the syntax of planor.factors.

nlevels see planor.factors. Ignored if factors is of class designfactors.

block see planor.factors. Ignored if factors is of class designfactors.

ordered see planor.factors. Ignored if factors is of class designfactors.

hierarchy see planor.factors. Ignored if factors is of class designfactors.

model a list of model-estimate pairs of formulae, typically an output from planor.model.
Alternatively, you can use the arguments model, estimate, listofmodels and
resolution, as described in the syntax of planor.model.

estimate see planor.model. Ignored if model is a list.

listofmodels see planor.model. Ignored if model is a list.

resolution see planor.model. Ignored if model is a list. When set and there is no hierarchy,
a faster algorithm is used which exploits the symmetries.

planor.designkey 17

nunits a scalar giving the total number of units in the design

base an optional additive formula to specify the basic factors. See Note.

max.sol maximum number of solutions before exit.

randomsearch a logical. If TRUE, the searches for a key matrix are performed in a random
order.

verbose a logical to set to TRUE for verbose display.

Details

The methods implemented in planor rely on a decomposition of the design search according to
prime numbers. The prime numbers involved are those that decompose the numbers of levels of
the factors. For example, if all factors have 2, 4, or 8 levels, then the number of units must be a
power of 2 and the only prime number involved is 2. This is called the symmetric case. But if at
least one factor has 6 levels, or if factor A has 2 levels and factor B has 3 levels, then the number of
units must be the product of a power of 2 by a power of 3. In this case the search is automatically
decomposed into one for prime 2 and one for prime 3. This is called the asymmetric case.

In the symmetric case with prime p, a regular factorial design requires a single key matrix of integers
modulo p. In the asymmetric case, it requires one key matrix per prime. In planor, key matrices are
stored in objects of class keymatrix. The lists made of one key matrix per prime are called design
keys. They are stored in objects of class designkey.

The function planor.designkey essentially searches for design keys that satisfy the user specifi-
cations. For technical reasons, however, its output can take two different forms: either an object of
class listofkeyrings or an object of class listofdesignkeys. The function planor.designkey
detects automatically which case applies. In the first case (independent case), the key matrix
solutions can be searched independently between primes and they are stored in objects of class
listofkeyrings. The second case (recursive case) occurs exceptionnally. In that case the search
cannot be independent between primes and so the different solutions are directly stored in a list of
class listofdesignkeys.

Value

An object of class listofkeyrings in most cases. Otherwise, i.e in recursive cases, an object of
class listofdesignkeys.

Note

The nunits argument is compulsory except if the base argument is used. When both arguments
are missing, the program stops and it gives the size that would be required by a full factorial design.
When only nunits is missing, the number of units is given by the product of the numbers of levels
of the base factors.

The base formula must be an additive formula involving a subset of factors, called the basic factors.
Using the base argument ensures that the design solutions will include the full factorial design for
the basic factors. This option can speed up the search because it restricts the domain to be explored
by the search algorithm.

Author(s)

Monod, H. and Bouvier, A.

See Also

planor.factors, planor.model, and the classes designfactors, listofkeyrings, listofdesignkeys

18 planor.factors

Examples

K0 <- planor.designkey(factors=c("block", LETTERS[1:4]),
nlevels=rep(3,5), model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

With automatic model generation
Km <- planor.designkey(factors=c("block", LETTERS[1:4]),

nlevels=rep(2,5), resolution=3, nunits=2^4)

planor.factors Create an Object of Class designfactors

Description

Create an object of class designfactors, from the factor names and their numbers of levels, or
from a named list of factor levels. Both ways can be used in the same call. Additional information
can be provided: they will be used during the design search or in the summary functions applied to
the object.

Usage

planor.factors(factors = NULL, nlevels = NULL,
block = NULL, ordered = NULL, hierarchy = NULL,
dummy = FALSE)

Arguments

factors a character vector of factor names, or possibly a scalar, a dataframe or a list (see
DETAILS).

nlevels a vector of level numbers for each factor name (see DETAILS).

block an additive model formula to indicate the block factors.

ordered an additive model formula to indicate the quantitative factors (not used at all in
the present version).

hierarchy a formula or a list of formulae to indicate hierarchy relationships between factors
(see the planor vignette for details).

dummy a logical to identify dummy factors created and deleted by planor functions for
technical reasons.

Value

An object of class designfactors.

Note

The basic usage is to specify the names of the factors by a character vector of length n in argument
factors and their numbers of levels by a numeric vector of length n in argument nlevels. Alter-
natively, the factors argument can be an integer n, in which case the first n capital letters of the
alphabet are used as factor names. If nlevels is a scalar s, it is considered that all factors have s
levels. There are two more possibilities which allow for alphanumeric factor levels. If factors is a
dataframe, the factors in this dataframe are extracted together with their levels. Finally factors can
be a named list of n vectors, with each vector containing the levels of one factor. Note that nlevels

planor.harmonize 19

is ignored in these latter two cases. See the examples. The argument block allows to specify the
block or nuisance factors. This information is used by the alias and summary functions but it has
no effect on the design generation and randomization which depend on other arguments.

Author(s)

Monod, H. and Bouvier, A.

See Also

Class designfactors

Examples

planor.factors(c("A","B","C","P"),c(2,3,6,3))
planor.factors(LETTERS[1:12],2)
planor.factors(12,2)
planor.factors(c("A","B","Block"), 3, block=~Block)
zz <- planor.factors(c("A","B","Block"), c(2,3,5))
zz@levels$A <- c("plus","moins")
planor.factors(factors=list(A=c("plus","moins"), B=1:3, Block=1:5))
AB <- data.frame(A=c(rep(c("a","b"),3)), B=rep(c("z","zz","zzz"),rep(2,3)), C=1:6)
planor.factors(factors=AB)

planor.harmonize Harmonize the Factors

Description

Harmonize the factors originating from a list of factors, a list of models, and a list of basic factors
(this function is essentially for internal use).

Usage

planor.harmonize(factors, nlevels, ordered, hierarchy, model, estimate,
listofmodels, base)

Arguments

factors an object of class designfactors, typically an output from planor.factors).
Otherwise the arguments factors, nlevels, ordered, hierarchy follow the
syntax of planor.factors.

nlevels see planor.factors. Ignored if factors is of class designfactors.
ordered see planor.factors. Ignored if factors is of class designfactors.
hierarchy see planor.factors. Ignored if factors is an object of class designfactors.
model a list of model-estimate pairs of formulae, typically an output from planor.model.

Otherwise the arguments model, estimate and listofmodels follow the syn-
tax of planor.model.

estimate see planor.model. Ignored if model is a list.
listofmodels see planor.model. Ignored if model is a list.
base an optional formula to specify the basic factors. These factors must belong to

the factors argument

20 planor.model

Value

An object of class designfactors very similar to factors, but with two additional logical columns
in slots fact.info and pseudo.info:
- model (TRUE for the factors present in at least one model formula),
- basic (TRUE for the basic factors).

Note

This function is called at the start of the design search. It is essentially a check that the factors in all
three arguments are coherent, even though it performs some additional tasks. The function stops if it
detects a model or basic factor that is absent from factors. This is because the number of levels of
such a factor is unknown and so the design search cannot proceed. Besides, the function eliminates
the factors that do appear neither in model nor in base and it reorders the factors by putting first the
basic ones.

Author(s)

Monod, H. and Bouvier, A.

Examples

F2 <- planor.factors(factors=c("block",LETTERS[1:4]), nlevels=c(6,6,6,4,2))
M2 <- planor.model(model=~block+(A+B+C)^2, estimate=~A+B+C)
F2.h <- planor.harmonize(factors=F2, model=M2, base=~A+B)
names(F2)
names(F2.h)

planor.model Model and Estimate Specifications for a Design Search

Description

Declare the factorial terms that must be considered as non-negligible and the factorial terms that
must be estimable when the experiment will be analysed.

Usage

planor.model(model, estimate, listofmodels, resolution, factors)

Arguments

model main model formula. It contains all the non-negligible factorial terms.

estimate optional formula specifying the factorial terms to estimate. If missing, it is con-
sidered that all factorial terms in model have to be estimated.

listofmodels list of c(model,estimate) pairs, where model and estimate are formulae; us-
ing several pairs allows more flexibility in the design constraints (see Kobilinsky,
2005, or the split-plot example in the vignette); estimate is optional.

resolution an integer larger than or equal to 3, to specify the design resolution. When set,
the model and estimate arguments are ignored. See Note.

factors a designfactors object, typically an output from planor.factors. It must be
set only when the resolution argument is used.

planor.randomize 21

Value

A list of c(model,estimate) pairs, where model and estimate are formulae.

Note

The user can specify:
1/ either, model or listofmodels or both,
2/ or, resolution and factors, and possibly listofmodels.

When model and resolution are both set, model is ignored.

The second case, — when resolution and factors are set —, causes the automatic generation of
the main c(model,estimate) pair. Assuming S denotes the additive formula including all factors,
- if resolution is odd, the model formula is ~(S)^(resolution-1)/2,
- if resolution is even, the model formula is ~(S)^(resolution/2) and the estimate formula is
~(S)^(resolution/2)-1.

Author(s)

Monod, H. and Bouvier, A.

Examples

Basic example
planor.model(model=~block + (A+B+C)^2, estimate=~(A+B+C)^2)
Resolution: both calls to planor.model below are equivalent
planor.model(model=~(A+B+C+D)^2, estimate=~A+B+C+D)
myfactors <- planor.factors(factors=c(LETTERS[1:4]), nlevels=rep(2,4))
planor.model(resolution=4, factors=myfactors)
Complicated examples
planor.model(~A+B+C+D+A:B, ~A+B+C+D, listofmodels=list(c(~E+F,~E)))
planor.model(~A+B+C+D+A:B,~A+B+C+D, listofmodels=

list(c(~E+F,~E), ~G, ~H, c(~M+N,~N)))

planor.randomize Randomize a Factorial Design from an Orthogonal Block Structure

Description

Randomize a factorial design according to a specified block structure formula.

Usage

planor.randomize(blockformula, data, out.order, keep.initial=FALSE)

Arguments

blockformula the block structure formula.

data a data frame.

out.order a list of data factors that will be used to order the rows of the randomized
design; if missing, the factors of the block formula are used.

keep.initial if TRUE, the initial row order of the design is stored in column InitialUNITS
of the returned dataframe.

22 planordesign-class

Value

The input data frame after randomization.

Note

Each name in blockformula must correspond to a factor of the dataframe data. The only exception
is UNITS. If UNITS is used in blockformula but absent from data, a factor is added to data, with
one level per row. See the examples below for the usage of UNITS in blockformula.

Author(s)

Monod, H. and Bouvier, A.

References

Bailey, R.A. (1983) Generalized wreath products of permutation groups. Proc. London Math. Soc.,
47, 69–82.

Kobilinsky A. (1989) Randomization of a cartesian block structure. Technical Report. Laboratoire
de Biométrie. INRA. Versailles.

Examples

Block design
Design <- data.frame(block=rep(1:4,rep(2,4)),

treatment=c("A1","B1","A2","B2","A3","B3","A4","B4"))
No within-block randomization
planor.randomize(~block, data=Design)
Blocks and units within blocks randomization
planor.randomize(~block/UNITS, data=Design)
Row-Column design
RowColDes <- data.frame(row=rep(1:3,rep(3,3)),col=rep(1:3,3),
treatment=LETTERS[c(1:3,2,3,1,3,1,2)],
oldRow=rep(1:3,rep(3,3)),oldCol=rep(1:3,3))
planor.randomize(~row*col, data=RowColDes)

planordesign-class Class planordesign

Description

An S4 class to represent a final design.

Objects from the Class

Objects can be created by calls to method planor.design applied on an object of class designkey
or on an object of class listofkeyrings, and by calls to regular.design when argument output
is equal to ‘planordesign’.

regular.design 23

Slots

design a dataframe containing the final design.

factors an object of class designfactors which contains the factors specifications.

model a list containing the model and estimate specifications.

designkey a list of the keymatrix objects used to create the object.

nunits the number of units of the design.

recursive a logical equal to TRUE if the design has been constructed recursively.

Methods

getDesign extract a design data frame. See getDesign method.

as.data.frame coerce into a data frame. See as.data.frame method.

Author(s)

Monod, H. and Bouvier, A.

Examples

showClass("planordesign")
Creation of a listofdesignkeys object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Creation of a planordesign object from K0
P0 <- planor.design(key=K0, select=1)
show(P0)

regular.design Construct and Randomize a Regular Factorial Design

Description

Construct and randomize a regular factorial design.

Usage

regular.design(factors = NULL, nlevels = NULL, block = NULL,
ordered = NULL, hierarchy = NULL, model = NULL, estimate = NULL,
listofmodels = NULL, resolution = NULL, nunits = NULL,
base = NULL, randomize = NULL, randomsearch = FALSE,
output = "planordesign", verbose = FALSE, ...)

24 regular.design

Arguments

factors an object of class designfactors, typically an output from planor.factors).
Otherwise the arguments factors, nlevels, ordered, hierarchy follow the
syntax of planor.factors.

nlevels see planor.factors. Ignored if factors is of class designfactors.

block see planor.factors. Ignored if factors is of class designfactors.

ordered see planor.factors. Ignored if factors is of class designfactors.

hierarchy see planor.factors. Ignored if factors is of class designfactors.

model a list of model-estimate pairs of formulae, typically an output from planor.model.
Otherwise the arguments model, estimate, listofmodels and resolution
follow the syntax of planor.model.

estimate see planor.model. Ignored if model is a list.

listofmodels see planor.model. Ignored if model is a list.

resolution see planor.model. Ignored if model is a list. When set and there is no hierarchy,
a faster algorithm is used which exploits the symmetries.

nunits see planor.designkey.

base see planor.designkey.

randomize an optional formula to randomize the design.

randomsearch see planor.designkey.

output a string to specify the class of the output value: either a data.frame or a
planordesign object.

verbose a logical to set to TRUE for verbose display.

... additional arguments, in particular those related to randomization

Value

An object of class data.frame or planordesign, depending on the output argument.

Author(s)

Monod, H. and Bouvier, A.

See Also

planor.factors, planor.model, and the classes designfactors, listofkeyrings, listofdesignkeys

Examples

mydesign <- regular.design(factors=c("block", LETTERS[1:4]),
nlevels=rep(3,5), model=~block + (A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, randomize=~block/UNITS)

print(mydesign)

show-methods 25

show-methods Display Objects

Description

Methods to display the design key matrices.

Usage

S4 method for signature 'designkey'
show(object)

S4 method for signature 'keymatrix'
show(object)

S4 method for signature 'keyring'
show(object)

S4 method for signature 'listofdesignkeys'
show(object)

S4 method for signature 'listofkeyrings'
show(object)

Arguments

object object of the class

Details

The slot pseudo.info of the objects of class keymatrix is invisible.

Value

NULL

Note

- An R option named planor.max.print is set. It is equal to the number of printed rows and
columns in the display of planor matrices. Default is 20. You can change its value by using the
function options() (see ?options).
- This method is automatically invoked when objects of the class are displayed (see examples).

See Also

Classes where this method applies: designkey, keymatrix, keyring, listofdesignkeys, listofkeyrings

26 summary-methods

Examples

Creation of a listofdesignkeys object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),
nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Method show applied on a keymatrix object
show(K0[[1]][[1]])
Method show applied on a designkey object
show(K0[1])
Method show applied on the listofdesignkeys object
show(K0)
K0 # same

Creation of a listofkeyrings object
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),
model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)
Method show applied on a keyring object
show(K0[[1]])
print(K0[[1]]) # same
K0[[1]] # same
Method show applied on the listofkeyrings object
show(K0)

summary-methods Summarize the Design Properties

Description

Methods to summarize the design properties of an object, by printing the summary of each key
matrix.

Usage

S4 method for signature 'designkey'
summary(object, show="dtbw", save="k", ...)

S4 method for signature 'keymatrix'
summary(object, fact, block, show="dtbw", save="k", ...)

S4 method for signature 'keyring'
summary(object, show="tbw",save ="kw", ...)

S4 method for signature 'listofdesignkeys'
summary(object, show="tbw", save="kw", ...)

S4 method for signature 'listofkeyrings'
summary(object, show="tbw", save="kw", ...)

S4 method for signature 'planordesign'
summary(object, fact, block, show="dtbw", save="k", ...)

summary-methods 27

Arguments

object an object of the class.

fact a character or numeric vector of parent factor names for the columns of the
object.

block a logical vector to identify the columns of the object associated with a block
factor

show an optional string to identify the type of information to display. The recognized
letters are: ‘d’ for the design keys matrices, ‘t’ for the treatment effects con-
founded with the mean, ‘b’ for the block-and-treatment effects confounded with
the mean, ‘w’ for the weight profiles.

save an optional string to identify the type of information to return. The recognized
letters are: ‘k’ for the kernel matrices, ‘w’ for the weight profiles of the treatment
effects confounded with the mean.

... ignored.

Details

The amount of display depends on the value of the argument show, and the type of returned infor-
mation depends on the value of the argument save.

• When object is of class keymatrix, “summary” prints the key matrix, the factorial effects
confounded with the mean, and the weight profiles of the effects confounded with the mean,
according to the value of the argument show.
The keymatrix argument being denoted by key,
- The rows of key are associated with units factors (or pseudofactors) while its columns are
associated with treatment or block factors (or pseudofactors).
- The vectors in the arguments fact and block give information on the treatment and block
factors, so that their length is expected to be equal to the number of columns of key.
- If missing, fact attributes a distinct parent factor to each column of key and block is set to
TRUE for all columns.
“summary” returns a list with the components required by the argument save.

• When object is of class designkey, “summary” prints the summary of each of the key matri-
ces. It returns a list with as many components as key matrices, each one with the components
required by the argument save.

• When object is of class listofdesignkeys, “summary” prints the summary of each key
matrix in each design key. It returns a list with as many components as design keys, each one
is a list of the key matrices summaries.

• When object is of class listofkeyrings, “summary” prints the summary of each key matrix
in each keyring. It returns a list with as many components as keyrings, each one is a list of the
key matrices summaries.

• When object is of class keyring, “summary” prints the summary of each of its key matrices.
It returns a list with as many components as key matrices.

• When object is a planordesign, this function is the summary method applied on each of the
keymatrix objects contained in its designkey slot.

Value

A list. See Details
Information returned for each key matrix depends on the argument save.

28 summary-methods

• When save includes the character ‘k’, the returned list has a component named ‘k’.It is a
matrix, the columns of which are kernel generators of the key matrices.

• When save includes the character ‘w’, the returned list has a component named ‘w’, which
contains the weight profiles of the effects confounded with the mean.

Note

An R option named planor.max.print is set. It is equal to the number of printed rows and columns
in the display of planor matrices. Default is 20. You can change its value by using the function
options() (see ?options).

See Also

Classes where this method applies: designkey, keymatrix, keyring, listofdesignkeys, listofkeyrings,
planordesign

Examples

Creation of a listofdesignkeys object
K0 <- planor.designkey(factors=c("R","C","U","A","B1","B2"),

nlevels=c(3,2,2,3,2,2), model=~R*C + (A+B1+B2)^2, estimate=~A:B1+A:B2,
nunits=12, base=~R+C+U, max.sol=2)

Method summary applied on a keymatrix object
r <- summary(K0[[1]][[1]])
Method summary applied on a designkey object
summary(K0[1], save=NULL)
Method summary applied on the listofdesignkeys object
r <-summary(K0, show="dt")

Creation of a listofkeyrings object
K0 <- planor.designkey(factors=c(LETTERS[1:4], "block"), nlevels=rep(3,5),

model=~block+(A+B+C+D)^2, estimate=~A+B+C+D,
nunits=3^3, base=~A+B+C, max.sol=2)

Method summary applied on the keymatrix object
r <-summary(K0[[1]][[1]])
Method summary applied on the keyring object
r <-summary(K0[[1]])
Method summary applied on the listofkeyrings object
r <- summary(K0, show="dtb", save ="k")
print(r)

Index

∗Topic classes
designfactors-class, 6
designkey-class, 7
keymatrix-class, 9
keyring-class, 10
listofdesignkeys-class, 11
listofkeyrings-class, 12
planordesign-class, 22

∗Topic design
alias-methods, 3
bind-methods, 5
designfactors-class, 6
designkey-class, 7
getDesign-methods, 8
keymatrix-class, 9
keyring-class, 10
listofdesignkeys-class, 11
listofkeyrings-class, 12
pick-methods, 14
planor-package, 2
planor.design-methods, 15
planor.designkey, 16
planor.factors, 18
planor.harmonize, 19
planor.model, 20
planor.randomize, 21
planordesign-class, 22
regular.design, 23
show-methods, 25

∗Topic methods
alias-methods, 3
as.data.frame.planordesign, 5
bind-methods, 5
getDesign-methods, 8
pick-methods, 14
planor.design-methods, 15
show-methods, 25
summary-methods, 26

∗Topic package
planor-package, 2

[,designfactors,ANY,ANY,ANY-method
(designfactors-class), 6

[,designfactors-method (pick-methods),

14
[,listofdesignkeys,ANY,ANY,ANY-method

(listofdesignkeys-class), 11
[,listofdesignkeys-method

(pick-methods), 14
[,listofkeyrings,ANY,ANY,ANY-method

(listofkeyrings-class), 12
[,listofkeyrings-method (pick-methods),

14
[,planordesign,ANY,ANY,ANY-method

(planordesign-class), 22
[,planordesign-method (pick-methods), 14

alias, 8, 9, 12, 19
alias,designkey-method (alias-methods),

3
alias,keymatrix-method (alias-methods),

3
alias,listofdesignkeys-method

(alias-methods), 3
alias,listofkeyrings-method

(alias-methods), 3
alias,planordesign-method

(alias-methods), 3
alias-methods, 3
alias.designkey (alias-methods), 3
alias.keymatrix (alias-methods), 3
alias.listofdesignkeys (alias-methods),

3
alias.listofkeyrings (alias-methods), 3
alias.planordesign (alias-methods), 3
array, 9
as.data.frame, 8, 23
as.data.frame,planordesign-method

(as.data.frame.planordesign), 5
as.data.frame.planordesign, 5

bind, 6
bind (bind-methods), 5
bind,designfactors,designfactors-method

(bind-methods), 5
bind-methods, 5

designfactors, 6, 7, 10–12, 16–20, 23, 24

29

30 INDEX

designfactors-class, 6
designkey, 4, 9, 11, 13–15, 17, 22, 25, 27, 28
designkey-class, 7

getDesign, 23
getDesign (getDesign-methods), 8
getDesign,planordesign-method

(getDesign-methods), 8
getDesign-method (getDesign-methods), 8
getDesign-methods, 8

keymatrix, 4, 7, 10, 17, 23, 25, 27, 28
keymatrix-class, 9
keyring, 9, 10, 12, 25, 27, 28
keyring-class, 10

length,designfactors-method
(designfactors-class), 6

list, 8, 10–12
listofdesignkeys, 4, 7, 14, 15, 17, 24, 25,

27, 28
listofdesignkeys-class, 11
listofkeyrings, 4, 7, 10, 14, 15, 17, 22, 24,

25, 27, 28
listofkeyrings-class, 12

makedesignkey, 13
matrix, 9

names,designfactors-method
(designfactors-class), 6

pick, 11, 12
pick (pick-methods), 14
pick,listofdesignkeys-method

(pick-methods), 14
pick,listofkeyrings-method

(pick-methods), 14
pick-method (pick-methods), 14
pick-methods, 14
pick.listofkeyrings, 10
planor-package, 2
planor.design, 2, 8, 11, 12, 22
planor.design (planor.design-methods),

15
planor.design,designkey-method

(planor.design-methods), 15
planor.design,listofdesignkeys-method

(planor.design-methods), 15
planor.design,listofkeyrings-method

(planor.design-methods), 15
planor.design,numeric-method

(planor.design-methods), 15
planor.design-methods, 15

planor.designkey, 2, 6, 10–13, 16, 17, 24
planor.factors, 2, 6, 7, 16, 17, 18, 19, 20, 24
planor.harmonize, 19
planor.model, 2, 16, 17, 19, 20, 24
planor.randomize, 15, 21
planordesign, 4, 5, 8, 15, 24, 27, 28
planordesign-class, 22

regular.design, 2, 22, 23

show, 8–12
show,designkey-method (show-methods), 25
show,keymatrix-method (show-methods), 25
show,keyring-method (show-methods), 25
show,listofdesignkeys-method

(show-methods), 25
show,listofkeyrings-method

(show-methods), 25
show-method (show-methods), 25
show-methods, 25
structure, 9
summary, 8–12
summary,designkey-method

(summary-methods), 26
summary,keymatrix-method

(summary-methods), 26
summary,keyring-method

(summary-methods), 26
summary,listofdesignkeys-method

(summary-methods), 26
summary,listofkeyrings-method

(summary-methods), 26
summary,planordesign-method

(summary-methods), 26
summary-methods, 26
summary.designkey (summary-methods), 26
summary.keymatrix, 10
summary.keymatrix (summary-methods), 26
summary.keyring (summary-methods), 26
summary.listofdesignkeys

(summary-methods), 26
summary.listofkeyrings

(summary-methods), 26
summary.planordesign (summary-methods),

26

vector, 8–12

	planor-package
	alias-methods
	as.data.frame.planordesign
	bind-methods
	designfactors-class
	designkey-class
	getDesign-methods
	keymatrix-class
	keyring-class
	listofdesignkeys-class
	listofkeyrings-class
	makedesignkey
	pick-methods
	planor.design-methods
	planor.designkey
	planor.factors
	planor.harmonize
	planor.model
	planor.randomize
	planordesign-class
	regular.design
	show-methods
	summary-methods
	Index

