arXiv:1403.2805v1 [stat.CO] 12 Mar 2014

The jsonlite Package: A Practical and Consistent Mapping
Between JSON Data and R Objects

Jeroen Ooms
UCLA Department of Statistics

Abstract

A naive realization of JSON data in R maps JSON arrays to an unnamed list, and JSON objects to a
named list. However, in practice a list is an awkward, inefficient type to store and manipulate data.
Most statistical applications work with (homogeneous) vectors, matrices or data frames. Therefore JSON
packages in R typically define certain special cases of JSON structures which map to simpler R types.
Currently there exist no formal guidelines, or even consensus between implementations on how R data
should be represented in JSON. Furthermore, upon closer inspection, even the most basic data structures
in R actually do not perfectly map to their JSON counterparts and leave some ambiguity for edge cases.
These problems have resulted in different behavior between implementations and can lead to unexpected
output. This paper explicitly describes a mapping between R classes and JSON data, highlights potential
problems, and proposes conventions that generalize the mapping to cover all common structures. We
emphasize the importance of type consistency when using JSON to exchange dynamic data, and illustrate
using examples and anecdotes. The jsonlite R package is used throughout the paper as a reference

implementation.

1 Introduction

JavaScript Object Notation (JSON) is a text format for the serialization of structured data (Crockford, 2006a).
It is derived from the object literals of JavaScript, as defined in the ECMAScript Programming Language
Standard, Third Edition (ECMA, 1999). Design of JSON is simple and concise in comparison with other
text based formats, and it was originally proposed by Douglas Crockford as a “fat-free alternative to XML”
(Crockford, 2006b). The syntax is easy for humans to read and write, easy for machines to parse and generate
and completely described in a single page at http://www.json.org. The character encoding of JSON text
is always Unicode, using UTF-8 by default (Crockford, 2006a), making it naturally compatible with non-
latin alphabets. Over the past years, JSON has become hugely popular on the internet as a general purpose
data interchange format. High quality parsing libraries are available for almost any programming language,
making it easy to implement systems and applications that exchange data over the network using JSON. For
R (R Core Team, 2013), several packages that assist the user in generating, parsing and validating JSON
are available through CRAN;, including rjson (Couture-Beil, 2013), RJISONIO (Lang, 2013), and jsonlite
(Ooms et al., 2014).

The emphasis of this paper is not on discussing the JSON format or any particular implementation for using

http://arxiv.org/abs/1403.2805v1
http://www.json.org

JSON with R. We refer to Nolan and Temple Lang (2014) for a comprehensive introduction, or one of the
many tutorials available on the web. Instead we take a high level view and discuss how R data structures are
most naturally represented in JSON. This is not a trivial problem, particulary for complex or relational data
as they frequently appear in statistical applications. Several R packages implement toJSON and fromJSON
functions which directly convert R objects into JSON and vice versa. However, the exact mapping between
the various R data classes JSON structures is not self evident. Currently, there are no formal guidelines,
or even consensus between implementations on how R data should be represented in JSON. Furthermore,
upon closer inspection, even the most basic data structures in R actually do not perfectly map to their
JSON counterparts, and leave some ambiguity for edge cases. These problems have resulted in different
behavior between implementations, and can lead to unexpected output for certain special cases. To further
complicate things, best practices of representing data in JSON have been established outside the R community.

Incorporating these conventions where possible is important to maximize interoperability.

1.1 Parsing and type safety

The JSON format specifies 4 primitive types (string, number, boolean, null) and two universal structures:

e A JSON object: an unordered collection of zero or more name/value pairs, where a name is a string and

a value is a string, number, boolean, null, object, or array.
e A JSON array: an ordered sequence of zero or more values.

Both these structures are heterogeneous; i.e. they are allowed to contain elements of different types. There-
fore, the native R realization of these structures is a named list for JSON objects, and unnamed list for
JSON arrays. However, in practice a list is an awkward, inefficient type to store and manipulate data in R.
Most statistical applications work with (homogeneous) vectors, matrices or data frames. In order to give
these data structures a JSON representation, we can define certain special cases of JSON structures which get
parsed into other, more specific R types. For example, one convention which all current implementations
have in common is that a homogeneous array of primitives gets parsed into an atomic vector instead of a

list. The RJSONIO documentation uses the term “simplify” for this, and we adopt this jargon.

txt <- "[12, 3, 7]"
x <- fromJSON(txt)

is(x)

[1] "numeric" "vector"
print(x)

[1] 12 3 7

This seems very reasonable and it is the only practical solution to represent vectors in JSON. However the
price we pay is that automatic simplification can compromise type-safety in the context of dynamic data.
For example, suppose an R package uses fromJSON to pull data from a JSON API on the web, similar to
the example above. However, for some particular combination of parameters, the result includes a null
value, e.g: [12, null, 7]. This is actually quite common, many APIs use null for missing values or unset

fields. This case makes the behavior of parsers ambiguous, because the JSON array is technically no longer

homogenous. And indeed, some implementations will now return a 1list instead of a vector. If the user

had not anticipated this scenario and the script assumes a vector, the code is likely to run into type errors.

The lesson here is that we need to be very specific and explicit about the mapping that is implemented to
convert between JSON and R objects. When relying on JSON as a data interchange format, the behavior of the
parser must be consistent and unambiguous. Clients relying on JSON to get data in and out of R must know
exactly what to expect in order to facilitate reliable communication, even if the data themselves are dynamic.
Similarly, R code using dynamic JSON data from an external source is only reliable when the conversion from
JSON to R is consistent. Moreover a practical mapping must incorporate existing conventions and uses the
most natural representation of certain structures in R. For example, we could argue that instead of falling
back on a list, the array above is more naturally interpreted as a numeric vector where the null becomes
a missing value (NA). These principles will extrapolate as we start discussing more complex JSON structures

representing matrices and data frames.

1.2 Reference implementation: the jsonlite package

The jsonlite package provides a reference implementation of the conventions proposed in this document.
jsonlite is a fork of the RISONIO package by Duncan Temple Lang, which again builds on 1libjson C++
library from Jonathan Wallace. The jsonlite package uses the parser from RJSONIO, but the R code has
been rewritten from scratch. Both packages implement toJSON and fromJSON functions, but their output is
quite different. Finally, the jsonlite package contains a large set of unit tests to validate that R objects
are correctly converted to JSON and vice versa. These unit tests cover all classes and edge cases mentioned

in this document, and could be used to validate if other implementations follow the same conventions.

library(testthat)
test_package("jsonlite")

Note that even though JSON allows for inserting arbitrary white space and indentation, the unit tests assume

that white space is trimmed.

1.3 Class-based versus type-based encoding

The jsonlite package actually implements two systems for translating between R objects and JSON. This
document focuses on the toJSON and fromJSON functions which use R’s class-based method dispatch. For
all of the common classes in R, the jsonlite package implements toJSON methods as described in this doc-
ument. Users in R can extend this system by implementing additional methods for other classes. However
this also means that classes that do not have the toJSON method defined are not supported. Furthermore,
the implementation of a specific toJSON method determines which data and metadata in the objects of
this class gets encoded in its JSON representation, and how. In this respect, toJSON is similar to e.g. the
print function, which also provides a certain representation of an object based on its class and option-
ally some print parameters. This representation does not necessarily reflect all information stored in the
object, and there is no guaranteed one-to-one correspondence between R objects and JSON. L.e. calling
fromJSON(toJSON(object)) will return an object which only contains the data that was encoded by the

t0JSON method for this particular class, and which might even have a different class than the original.

The alternative to class-based method dispatch is to use type-based encoding, which jsonlite implements
in the functions serializeJSON and unserializeJSON. All data structures in R get stored in memory using
one of the internal SEXP storage types, and serializeJSON defines an encoding schema which captures
the type, value, and attributes for each storage type. The result is JSON output which closely resembles the
internal structure of the underlying C data types, and which can be perfectly restored to the original R object
using unserializeJSON. This system is relatively straightforward to implement, however the disadvantage
is that the resulting JSON is very verbose, hard to interpret, and cumbersome to generate in the context
of another language or system. For most applications this is actually impractical because it requires the
client/consumer to understand and manipulate R data types, which is difficult and reduces interoperability.
Instead we can make data in R more accessible to third parties by defining sensible JSON representations that
are natural for the class of an object, rather than its internal storage type. This document does not discuss
the serializeJSON system in any further detail, and solely treats the class based system implemented in
toJSON and fromJSON. However the reader that is interested in full serialization of R objects into JSON is

encouraged to have a look at the respective manual pages.

1.4 Scope and limitations

Before continuing, we want to stress some limitations of encoding R data structures in JSON. Most impor-
tantly, there are the limitations to types of objects that can be represented. In general, temporary in-memory
properties such as connections, file descriptors and (recursive) memory references are always difficult if not
impossible to store in a sensible way, regardless of the language or serialization method. This document
focuses on the common R classes that hold data, such as vectors, factors, lists, matrices and data frames.
We do not treat language level constructs such as expressions, functions, promises, which hold little meaning
outside the context of R. We also don’t treat special compound classes such as linear models or custom
classes defined in contributed packages. When designing systems or protocols that interact with R, it is
highly recommended to stick with the standard data structures for the interface input/output.

Then there are limitations introduced by the format. Because JSON is a human readable, text-based format,
it does not support binary data, and numbers are stored in their decimal notation. The latter leads to loss
of precision for real numbers, depending on how many digits the user decides to print. Several dialects of
JSON exists such as BSON (Chodorow, 2013) or MSGPACK (Furuhashi, 2014), which extend the format with
various binary types. However, these formats are much less popular, less interoperable, and often impractical,
precisely because they require binary parsing and abandon human readability. The simplicity of JSON is what
makes it an accessible and widely applicable data interchange format. In cases where it is really needed to
include some binary data in JSON, one can use something like base64 to encode it as a string.

Finally, as mentioned earlier, fromJSON is not a perfect inverse function of toJSON, as would be the case for
serialializeJSON and unserializeJSON. The class based mappings are designed for concise and practical
encoding of the various common data structures. Our implementation of toJSON and fromJSON approxi-
mates a reversible mapping between R objects and JSON for the standard data classes, but there are always
limitations and edge cases. For example, the JSON representation of an empty vector, empty list or empty
data frame are all the same: "[]1". Also some special vector types such as factors, dates or timestamps get
coerced to strings, as they would in for example CSV. This is a quite typical and expected behavior among

text based formats, but it does require some additional interpretation on the consumer side.

2 Converting between JSON and R classes

This section lists examples of how the common R classes are represented in JSON. As explained before, the
toJSON function relies on method dispatch, which means that objects get encoded according to their class.
If an object has multiple class values, R uses the first occurring class which has a toJSON method. If none

of the classes of an object has a toJSON method, an error is raised.

2.1 Atomic vectors

The most basic data type in R is the atomic vector. The atomic vector holds an ordered set of homogeneous
values of type "logical" (booleans), character (strings), "raw" (bytes), numeric (doubles), "complex"
(complex numbers with a real and imaginary part), or integer. Because R is fully vectorized, there is no
user level notion of a primitive: a scalar value is considered a vector of length 1. Atomic vectors map to

JSON arrays:
x <= c(1, 2, pi)
cat (toJSON(x))

[1, 2, 3.14]

The JSON array is the only appropriate structure to encode a vector, however note that vectors in R are
homogeneous, whereas the JSON array is actually heterogeneous, but JSON does not make this distinction.

2.1.1 Missing values

A typical domain specific problem when working with statistical data is presented by missing values: a
concept foreign to many other languages. Besides regular values, each vector type in R except for raw can
hold NA as a value. Vectors of type double and complex define three additional types of non finite values:
NaN, Inf and -Inf. The JSON format does not natively support any of these types; therefore such values
values need to be encoded in some other way. There are two obvious approaches. The first one is to use the

JSON null type. For example:
x <- c(TRUE, FALSE, NA)
cat (toJSON(x))

[true, false, null]

The other option is to encode missing values as strings by wrapping them in double quotes:
x <- c(1, 2, NA, NaN, Inf, 10)
cat (toJSON(x))

[1, 2’ "NA", "NaN" , "Inf", 10]
Both methods result in valid JSON, but both have a limitation: the problem with the null type is that it

is impossible to distinguish between different types of missing data, which could be a problem for numeric
vectors. The values Inf, -Inf, NA and NaN carry different meanings, and these should not get lost in the

encoding. However, the problem with encoding missing values as strings is that this method can not be
used for character vectors, because the consumer won’t be able to distinguish the actual string "NA" and the
missing value NA. This would create a likely source of bugs, where clients mistakenly interpret "NA" as an
actual value, which is a common problem with text-based formats such as CSV. For this reason, jsonlite
uses the following defaults:

e Missing values in non-numeric vectors (Logical, character) are encoded as null.
e Missing values in numeric vectors (double, integer, complex) are encoded as strings.

We expect that these conventions are most likely to result in the correct interpretation of missing values.

Some examples:

cat(toJSON(c(TRUE, NA, NA, FALSE)))

[true, null, null, false]

cat(toJSON(c("FOO", "BAR", NA, "NA")))

["FOO", "BAR", null, "NA"]

cat(toJSON(c(3.14, NA, NaN, 21, Inf, -Inf)))

[3.14, "NA", "NaN", 21, "Inf", "-Inf"]
cat(toJSON(c(3.14, NA, NaN, 21, Inf, -Inf), na = "null"))

[3.14, null, null, 21, null, null]

2.1.2 Special vector types: dates, times, factor, complex

Besides missing values, JSON also lacks native support for some of the basic vector types in R that frequently
appear in data sets. These include vectors of class Date, POSIXt (timestamps), factors and complex vectors.

By default, the jsonlite package coerces these types to strings (using as.character):

cat (toJSON(Sys.time() + 1:3))

["2014-03-11 21:16:05", "2014-03-11 21:16:06", "2014-03-11 21:16:07"]
cat(toJSON(as.Date(Sys.time()) + 1:3))

["2014-03-13", "2014-03-14", "2014-03-15"]

cat (toJSON(factor(c("foo", "bar", "foo"))))

["foo", "bar", "foo"]

cat (toJSON(complex(real = runif(3), imaginary = rnorm(3))))

["0.5+1.74i", "0-2i", "0.37-0.13i"]

When parsing such JSON strings, these values will appear as character vectors. In order to obtain the

original types, the user needs to manually coerce them back to the desired type using the corresponding as
function, e.g. as.P0OSIXct, as.Date, as.factor or as.complex. In this respect, JSON is subject to the same

limitations as text based formats such as CSV.

2.1.3 Special cases: vectors of length 0 or 1

Two edge cases deserve special attention: vectors of length 0 and vectors of length 1. In jsonlite these are

encoded respectively as an empty array, and an array of length 1:

vectors of length O and 1
cat (toJSON(vector()))

[1]
cat (toJSON(pi))
[3.14]

vectors of length 0 and 1 in a named list

cat(toJSON(1list (foo = vector())))

{ "foo" : [1%

cat (toJSON(list (foo = pi)))

{ "foo" : [3.14 1 }

vectors of length O and 1 in an unnamed list
cat(toJSON(list(vector())))

L[11
cat (toJSON(1ist(pi)))

[[3.14] 1

This might seem obvious but these cases result in very different behavior between different JSON packages.
This is probably caused by the fact that R does not have a scalar type, and some package authors decided to
treat vectors of length 1 as if they were a scalar. For example, in the current implementations, both RJSONIO
and rjson encode a vector of length one as a JSON primitive when it appears within a list:

Other packages make different choices:
cat(rjson::toJSON(list(n = c(1))))
{llnll:l}

cat(rjson::toJSON(list(n = c(1, 2))))

{"n":[1,2]}

When encoding a single dataset this seems harmless, but in the context of dynamic data this inconsistency
is almost guaranteed to cause bugs. For example, imagine an R web service which lets the user fit a linear
model and sends back the fitted parameter estimates as a JSON array. The client code then parses the JSON,
and iterates over the array of coefficients to display them in a GUI. All goes well, until the user decides to

fit a model with only one predictor. If the JSON encoder suddenly returns a primitive value where the client

is assuming an array, the application will likely break. Any consumer or client would need to be aware of
the special case where the vector becomes a primitive, and explicitly take this exception into account when
processing the result. When the client fails to do so and proceeds as usual, it will probably call an iterator or
loop method on a primitive value, resulting in the obvious errors. For this reason jsonlite uses consistent
encoding schemes which do not depend on variable object properties such as its length. Hence, a vector is

always encoded as an array, even when it is of length 0 or 1.

2.2 Matrices

Arguably one of the strongest sides of R is its ability to interface libraries for basic linear algebra subpro-
grams (Lawson et al., 1979) such as LAPACK (Anderson et al., 1999). These libraries provide well tuned,
high performance implementations of important linear algebra operations to calculate anything from inner
products and eigen values to singular value decompositions. These are in turn the building blocks of statis-
tical methods such as linear regression or principal component analysis. Linear algebra methods operate on
matrices, making the matrix one of the most central data classes in R. Conceptually, a matrix consists of a
2 dimensional structure of homogeneous values. It is indexed using 2 numbers (or vectors), representing the
row and column number of the matrix respectively.

x <- matrix(1:12, nrow = 3, ncol = 4)

print(x)

[,11 [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

print(x[2, 4])
[1] 11

A matrix is stored in memory as a single atomic vector with an attribute called "dim" defining the dimensions
of the matrix. The product of the dimensions is equal to the length of the vector.

attributes(volcano)

$dim
[1] 87 61

length(volcano)
[1] 5307
Even though the matrix is stored as a single vector, the way it is printed and indexed makes it conceptually

a 2 dimensional structure. In jsonlite a matrix maps to an array of equal-length subarrays:

x <- matrix(1:12, nrow = 3, ncol = 4)
cat (toJSON(x))

(C1,4,7,10]1, [2,5,8,11], [3,6,9, 12]]

We expect this representation will be the most intuitive to interpret, also within languages that do not have
a native notion of a matrix. Note that even though R stores matrices in column major order, jsonlite
encodes matrices in row magjor order. This is a more conventional and intuitive way to represent matrices
and is consistent with the row-based encoding of data frames discussed in the next section. When the JSON
string is properly indented (recall that white space and line breaks are optional in JSON), it looks very similar

to the way R prints matrices:

(r1,4, 7,101,
[2,5,8, 111],
[3,6,9,12]]

Because the matrix is implemented in R as an atomic vector, it automatically inherits the conventions
mentioned earlier with respect to edge cases and missing values:

x <- matrix(c(1, 2, 4, NA), nrow = 2)
cat (toJSON(x))

(C1,471, [2, "NA"]]
cat(toJSON(x, na = "null"))
(1,471, [2, null]]
cat (toJSON(matrix(pi)))

[[3.141 1]

2.2.1 Matrix row and column names

Besides the "dim" attribute, the matrix class has an additional, optional attribute: "dimnames". This
attribute holds names for the rows and columns in the matrix. However, we decided not to include this
information in the default JSON mapping for matrices for several reasons. First of all, because this attribute
is optional, often either row or column names or both are NULL. This makes it difficult to define a practical
encoding that covers all cases with and without row and/or column names. Secondly, the names in matrices
are mostly there for annotation only; they are not actually used in calculations. The linear algebra subrou-
tines mentioned before completely ignore them, and never include any names in their output. So there is
often little purpose of setting names in the first place, other than annotation.

When row or column names of a matrix seem to contain vital information, we might want to transform the
data into a more appropriate structure. Wickham (2014) calls this “tidying” the data and outlines best
practices on storing statistical data in its most appropriate form. He lists the issue where “column headers
are values, not variable names” as the most common source of untidy data. This often happens when the
structure is optimized for presentation (e.g. printing), rather than computation. In the following example
taken from Wickham, the predictor variable (treatment) is stored in the column headers rather than the
actual data. As a result, these values are not included in the JSON:

x <- matrix(c(NA, 1, 2, 5, NA, 3), nrow = 3)

row.names(x) <- c("Joe", "Jane", "Mary")

colnames(x) <- c("Treatment A", "Treatment B")

print(x)

Treatment A Treatment B

Joe NA 5
Jane 1 NA
Mary 2 3
cat (toJSON(x))

[[C"~A", 571, [1, "NA" 1, [2,311

Wickham recommends that the data be melted into its tidy form. Once the data is tidy, the JSON encoding

will naturally contain the treatment values:

library (reshape2)
y <- melt(x, varnames = c("Subject", "Treatment"))
print(y)

Subject Treatment value

1 Joe Treatment A NA
2 Jane Treatment A
3 Mary Treatment A
4 Joe Treatment B
5 Jane Treatment B NA
6 Mary Treatment B 3

cat (toJSON(y, pretty = TRUE))

L

{
"Subject" : "Joe",
"Treatment" : "Treatment A"

¥e

{
"Subject" : "Jane",
"Treatment" : "Treatment A",
"value" : 1

Yo

{
"Subject" : "Mary",
"Treatment" : "Treatment A",
"value" : 2

¥e

{
"Subject" : "Joe",
"Treatment" : "Treatment B",

10

"value" : 5

Yo

{
"Subject" : "Jane",
"Treatment" : "Treatment B"

Yo

{
"Subject" : "Mary",
"Treatment" : "Treatment B",
"value" : 3

}

In some other cases, the column headers actually do contain variable names, and melting is inappropriate.
For data sets with records consisting of a set of named columns (fields), R has more natural and flexible
class: the data-frame. The toJSON method for data frames (described later) is more suitable when we want
to refer to rows or fields by their name. Any matrix can easily be converted to a data-frame using the

as.data.frame function:

cat(toJSON(as.data.frame(x), pretty = TRUE))

[
{
"$row" : "Joe",
"Treatment B" : 5
e
{
"$row" : "Jane",
"Treatment A" : 1
e
{
"$row" : "Mary",
"Treatment A" : 2,
"Treatment B" : 3
}
]

For some cases this results in the desired output, but in this example melting seems more appropriate.

2.3 Lists

The 1list is the most general purpose data structure in R. It holds an ordered set of elements, including
other lists, each of arbitrary type and size. Two types of lists are distinguished: named lists and unnamed
lists. A list is considered a named list if it has an attribute called "names". In practice, a named list is

11

any list for which we can access an element by its name, whereas elements of an unnamed lists can only be

accessed using their index number:

mylistl <- list(foo = 123, bar = 456)
print (mylisti$bar)

[1] 456

mylist2 <- 1ist(123, 456)
print (mylist2[[2]])

[1] 456

2.3.1 Unnamed lists

Just like vectors, an unnamed list maps to a JSON array:

cat (toJSON(list(c(1l, 2), "test", TRUE, list(c(l, 2)))))

[1,27, ["test"], [truel, [[1, 2111

Note that even though both vectors and lists are encoded using JSON arrays, they can be distinguished from
their contents: an R vector results in a JSON array containing only primitives, whereas a list results in a
JSON array containing only objects and arrays. This allows the JSON parser to reconstruct the original type

from encoded vectors and arrays:

x <- list(c(1, 2, NA), "test", FALSE, list(foo = "bar"))
identical (fromJSON (toJSON(x)), x)

[1] TRUE
The only exception is the empty list and empty vector, which are both encoded as [] and therefore

indistinguishable, but this is rarely a problem in practice.

2.3.2 Named lists

A named list in R maps to a JSON object:
cat (toJSON(list(foo = c(1, 2), bar = "test")))
{ "foo" : [1, 2], "bar" : ["test"] }

Because a list can contain other lists, this works recursively:

cat (toJSON(list (foo=list(bar=1list(baz=pi)))))

{ "foo" : { "bar" : { "baz" : [3.14 1 } } }

Named lists map almost perfectly to JSON objects with one exception: list elements can have empty names:

12

x <- list(foo = 123, "test", TRUE)
attr(x, "names")

[1] "foo" "" o

x$foo

[1] 123

x[[2]]

[1] "test"

In a JSON object, each element in an object must have a valid name. To ensure this property, jsonlite

uses the same solution as the print method, which is to fall back on indices for elements that do not have

a proper name:

x <- list(foo = 123, "test", TRUE)
print(x)

$foo
[1] 123

[[2]1]
[1] "test"

[[3]]
[1] TRUE

cat (toJSON(x))
{ "foo" : [123 1, "2" : ["test"], "3" : [true] %}
This behavior ensures that all generated JSON is valid, however named lists with empty names should be

avoided where possible. When actually designing R objects that should be interoperable, it is recommended

that each list element is given a proper name.

2.4 Data frame

The data frame is perhaps the most central data structure in R from the user point of view. This class holds
tabular data in which each column is named and (usually) homogeneous. Conceptually it is very similar to
a table in relational data bases such as MySQL, where fields are referred to as column names, and records are
called row names. Like a matrix, a data frame can be subsetted with two indices, to extract certain rows
and columns of the data:

is(iris)
[1] "data.frame" "list" "o0ldClass" "vector"

names (iris)

13

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[6] "Species"

print(iris[1:3, c(1, 5)1)

Sepal.Length Species
5.1 setosa
4.9 setosa

4.7 setosa
print(iris[1:3, c("Sepal.Width", "Species")])

Sepal.Width Species
3.5 setosa
3.0 setosa
3.2 setosa

For the previously discussed classes such as vectors and matrices, behavior of jsonlite is quite similar to
the other available packages that implement toJSON and toJSON functions, with only minor differences for
missing values and edge cases. But when it comes to data frames, jsonlite takes a completely different
approach. The behavior of jsonlite is designed for compatibility with conventional ways of encoding table-
like structures outside the R community. The implementation is more complex, but results in a powerful

and more natural way of interfacing data frames through JSON and vice versa.

2.4.1 Column based versus row based tables

Generally speaking, tabular data structures can be implemented in two different ways: in a column based,
or row based fashion. A column based structure consists of a named collection of equal-length, homogeneous
arrays representing the table columns. In a row-based structure on the other hand, the table is implemented
as a set of heterogeneous associative arrays representing table rows with field values for each particular record.
Even though most languages provide flexible and abstracted interfaces that hide such implementation details
from the user, they can have huge implications for performance. A column based structure is efficient for
inserting or extracting certain columns of the data, but it is inefficient for manipulating individual rows. For
example to insert a single row somewhere in the middle, each of the columns has to be sliced and stitched
back together. For row-based implementations, it is the exact other way around: we can easily manipulate
a particular record, but to insert/extract a whole column we would need to iterate over all records in the

table and read/modify the appropriate field in each of them.

The data frame in R is implemented in a column based fashion: it constitutes of a named list of equal-length
vectors. Thereby the columns in the data frame naturally inherit the properties from atomic vectors discussed
before, such as homogeneity, missing values, etc. Another argument for column-based implementation is that
statistical methods generally operate on columns. For example, the 1m function fits a linear regression by
extracting the columns from a data frame as specified by the formula argument. R simply binds the specified
columns together into a matrix X and calls out to a highly optimized FORTRAN subroutine to calculate
the OLS estimates 8 = (XTX)XTy using the QR factorization of X. Many other statistical modeling
functions follow similar steps, and are computationally efficient because of the column-based data storage

14

in R. However, unfortunately R is an exception in its preference for column-based storage: most languages,
systems, databases, APIs, etc, are optimized for record based operations. For this reason, the conventional
way to store and communicate tabular data in JSON seems to almost exclusively row based. This discrepancy
presents various complications when converting between data frames and JSON. The remaining of this section
discusses details and challenges of consistently mapping record based JSON data as frequently encountered

on the web, i