
Package ‘galgo’
March 25, 2014

Type Package

Version 1.2

Date 2014-03-19

Title Genetic Algorithms for Multivariate Statistical Models from
Large-scale Functional Genomics Data

Author@R c(person(``Victor'', ``Trevino'', role=``aut'',email=``vtrevino@itesm.mx''), per-
son(``Francesco'', ``Falciani'',role=``aut''))

Author Victor Trevino & Francesco Falciani

Maintainer Victor Trevino <vtrevino@itesm.mx>

Description Galgo attempt to build multivariate predictive models from large datases hav-
ing far larger number of features than samples such as in functional genomics datasets

License GPL-2

LazyLoad no

Depends R.oo, MASS, class, e1071, rpart, nnet, randomForest

URL http://bioinformatica.mty.itesm.mx/?q=node/82

R topics documented:
galgo-package . 2
ALL . 3
ALL.classes . 4
as.list.Object . 5
Bag . 6
BigBang . 7
Chromosome . 11
classPrediction . 13
configBB.VarSel . 14
configBB.VarSelMisc . 19
fitness . 24
Galgo . 24
galgo.dist . 28
Gene . 29

1

2 galgo-package

geneBackwardElimination . 30
generateRandomModels . 32
knn_C_predict . 33
knn_R_predict . 33
loadObject . 34
mlhd_C_predict . 35
mlhd_R_predict . 36
modelSelection . 37
nearcent_C_predict . 37
nearcent_R_predict . 38
Niche . 39
nnet_R_predict . 42
randomforest_R_predict . 43
reObject . 43
robustGeneBackwardElimination . 45
rpart_R_predict . 46
runifInt . 47
svm_C_predict . 47
svm_R_predict . 48
unObject . 49
World . 50

Index 53

galgo-package Galgo perform feature selection from large scale data.

Description

Represents a genetic algorithm (GA) itself. The basic GA uses at least one population of chromo-
somes, a “fitness” function, and a stopping rule (see references).

The Galgo object is not limited to a single population, it implements a list of populations where any
element in the list can be either a Niche object or a World object. Nervertheless, any user-defined
object that implements evolve, progeny, best, max, bestFitness, and maxFitness
methods can be part of the populations list.

The “fitness” function is by far the most important part of a GA, it evaluates a Chromosome to de-
termine how good the chromosome is respect to a given goal. The function can be sensitive to data
stored in .GlobalEnv or any other object (see *evaluate() for further details). For this pack-
age and in the case of the microarray, we have included several fitness functions to classify samples
using different methods. However, it is not limited for a classification problem for microarray data,
because you can create any fitness function in any given context.

The stopping rule has three options. First, it is simply a desired fitness value implemented as a
numeric fitnessGoal, and If the maximum fitness value of a population is equal or higher
than fitnessGoal the GA ends. Second, maxGenerations determine the maximum number
of generations a GA can evolve. The current generation is increased after evaluating the fitness
function to the entire population list. Thus, if the current generation reach maxGenerations the
GA stops. Third, if the result of the user-defined callBackFunc is NA the GA stops. In addition,
you can always break any R program using Ctrl-C (or Esc in Windows).

ALL 3

When the GA ends many values are used for futher analysis. Examples are the best chromosome
(best method), its fitness (bestFitness method), the final generation (generation vari-
able), the evolution of the maximum fitness (maxFitnesses list variable), the maximum chromo-
some in each generation (maxChromosome list variable), and the elapsed time (elapsedTime
variable). Moreover, flags like goalScored, userCancelled, and running are available.

Details

Package: galgo
Type: Package
Version: 1.0
Date: 2011-05-31
License: What license is it under?
LazyLoad: yes

See BigBang and Galgo Objects for usage.

Author(s)

Victor Trevino and Francesco Falciani

Maintainer: Victor Trevino <vtrevino@itesm.mx>

References

GALGO: An R Package For Multivariate Variable Selection Using Genetic Algorithms Victor
Trevino and Francesco Falciani School of Biosciences, University of Birmingham, Edgbaston, UK
Bioinformatics 2006

See Also

BigBang and Galgo Objects.

Examples

Not run:
bb <- configBB.VarSel(...) #not runs

End(Not run)

ALL Acute Lymphoblastic Leukemia data (Yeoh et. al., 2002) for GALGO
package

Description

Acute Lymphoblastic Leukemia for GALGO package data published by Yeoh et. al. The original
360 pediatric acute leukemia samples were filtered by class. 233 samples are included correspond-
ing to 5 classes EMLLA, HYP+50, MLL, T, and TEL. The Affymetrix microarray HG_U95Av2
containing 12,600 probesets were filteres by range and standard deviation resulting in 2,435 probe-
sets (genes).

4 ALL.classes

Usage

data(ALL)

Format

The format is: 2,435 Rows : Genes 233 Columns : Samples Row Names : ProbeId Col Names :
Samples Id 5 Classes : Lukemia Types: "EMLLA"=E2A-PBX1, "T"=T-ALL, "HYP+50"=Hyperdiploid
> 50 Chromosomes, "MLL"=MLL rearragment, and "TEL"=TEL-AML1

Details

ALL data is complmented by ALL.classes which contain the classes for each column sample.

References

Eng-Juh Yeoh, Mary E. Ross, Sheila A. Shurtleff, W. Kent Williams, Divyen Patel, Rami Mahfouz,
Fred G. Behm, Susana C. Raimondi, Mary V. Relling, Anami Patel, Cheng Cheng, Dario Campana„
Dawn Wilkins, Xiaodong Zhou, Jinyan Li, Huiqing Liu, Ching-Hon Pui, William E. Evans, Clayton
Naeve, Limsoon Wong, and James R. Downing. Classification, subtype discovery, and prediction
of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell.
March 2002.

Examples

data(ALL)
data(ALL.classes)

ALL.classes Acute Lymphoblastic Leukemia data (Yeoh et. al., 2002) for GALGO
package

Description

Acute Lymphoblastic Leukemia for GALGO package data published by Yeoh et. al. The original
360 pediatric acute leukemia samples were filtered by class. 233 samples are included correspond-
ing to 5 classes EMLLA, HYP+50, MLL, T, and TEL. The Affymetrix microarray HG_U95Av2
containing 12,600 probesets were filteres by range and standard deviation resulting in 2,435 probe-
sets (genes).

Usage

data(ALL.classes)

Format

5 Classes : Lukemia Types: "EMLLA"=E2A-PBX1, "T"=T-ALL, "HYP+50"=Hyperdiploid > 50
Chromosomes, "MLL"=MLL rearragment, and "TEL"=TEL-AML1

Details

ALL.classes is complementary for ALL data which contain the expression values for the genes in
all samples.

as.list.Object 5

References

Eng-Juh Yeoh, Mary E. Ross, Sheila A. Shurtleff, W. Kent Williams, Divyen Patel, Rami Mahfouz,
Fred G. Behm, Susana C. Raimondi, Mary V. Relling, Anami Patel, Cheng Cheng, Dario Campana„
Dawn Wilkins, Xiaodong Zhou, Jinyan Li, Huiqing Liu, Ching-Hon Pui, William E. Evans, Clayton
Naeve, Limsoon Wong, and James R. Downing. Classification, subtype discovery, and prediction
of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell.
March 2002.

Examples

data(ALL)
data(ALL.classes)

as.list.Object Convert a variable of class Object to a list

Description

Object variables behave as lists, however they are really enviroments. Sometimes it is necesary to
use the variable as a list instead of an Object. This function converts the Object to a list.

Usage

as.list(x, ...)

Arguments

x Variable of class Object

... Other object to include

Value

Returns a list with values equivalent to the Object.

Note

Values that contain functions will be assigned to .GlobalEnv enviroment.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

Examples

xO <- Object()
xO$var = "hello"
class(xO)
xOL <- as.list(xO)
xOL
class(xOL)

6 Bag

Bag A list-like Object

Description

Create a list of values. Lists inside an Object behave as by value (if the list is modified in a
method, the original list is not updated). Therefore, Bag replace this behaviour extending Object
and allowing to save reference-lists inside objects.

Usage

Bag(...)

Arguments

... Values to store in the Bag object.

Class

Package: galgo
Class Bag

Object
~~|
~~+--Bag

Directly known subclasses:

public static class Bag
extends Object

Fields and Methods

Methods:

length Gets the length of the object as its list version.
print Prints the representation of the Bag object.
summary Prints the representation of the Bag object.

Methods inherited from Object:
as.list, unObject, $, $<-, [[, [[<-, as.character, attach, clone, detach, equals, extend, finalize, get-
Fields, getInstanciationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf

BigBang 7

See Also

See also list().

Examples

b <- Bag(a=1,b=2,c=3)
b
as.list(b)
unObject(b)

BigBang Represents the ensemble of the results of evolving several Galgo ob-
jects

Description

The BigBang object is an attempt to use more the information of a large collection of solutions
instead of a unique solution. Perhaps we are studying the solution landscape or we would like to
“ensemble” solutions from other “small” solutions. For complex problems (or even simple prob-
lems), the number of “solutions” may be very large and diverse. In the context of classification for
microarray data, we have seen that models assembled from many solution could be used as “general
models” and that the most frequent genes in solutions provide insights for biological phenomena.

Therefore, we designed the BigBang object, which implements methods to run a Galgo object
several times recording relevant information from individual galgos for further analysis. Running
a BigBang takes commonly several minutes, hours or perhaps days depending on the complexity
of the fitness function, the data, the goalFitness, the stopping rules in Galgo, and the num-
ber of solutions to collect. Parallelism is not explicity implemented but some methods has been
implemented to make this task easy and possible.

As in a Galgo object, there are three stopping methods: maxBigBangs, maxSolutions and
callBackFunc. maxBigBangs controls the maximum number of galgo evolutions to run;
when the current evolution-cycle reaches this value, the process ends. Sometimes evolutions do not
end up with a goalFitness reached, this is not called a “solution”. Therefore, maxSolutions
controls the maximum number of solutions desired. If onlySolutions==FALSE, all galgo
evolutions are saved and considered as “solution”, nevertheless the solution variable save the
real status in the BigBang object. callBackFunc may ends the process if it returns NA. It must
be considered that any R-program can be broken typing Ctrl-C (Esc in Windows). If for some
reason the process has been interrupt, the BigBang process can continue processing the same cycle
just calling the method blast again. However the object integrity may be risked if the process is
broken in critical parts (when the object is being updated at the end of each cycle). Thus, it is
recommended to break the process in the galgo “evolution”.

In the case of variable selection for microarray data, some methods has been proposed that use sev-
eral independent solutions to design a final solution (or set of better solutions, see XXX references
*** MISSING ***).

There is configBB.VarSel and configBB.VarSelMisc functions that configure a BigBang object to-
gether with all sub-objects for common variable selection problems (e.g. classification, regression,
etc.)

8 BigBang

Usage

BigBang(id=0,
galgo=NULL,
maxBigBangs=10,
maxSolutions=1,
collectMode=c("bigbang", "galgos", "chromosomes"),
onlySolutions=TRUE,
verbose=1,
callPreFunc=function(bigbang, galgo) TRUE,
callBackFunc=function(bigbang, galgo) TRUE,
callEnhancerFunc=function(chr, parent) NULL,
data=NULL,
saveFile=NULL,
saveFrequency=100,
saveVariableName=collectMode,
saveMode=c("unObject+compress", "unObject", "object", "object+compress"),
saveGeneBreaks=NULL,
geneNames=NULL,
sampleNames=NULL,
classes=NULL,
gcFrequency=123,
gcCalls=5,
call=NULL,
...)

Arguments

id A way to identify the object.

galgo The prototype Galgo object that will be used to run and collect solutions.

maxBigBangs The maximum number of BigBangs. A bigbang is the evolution of a Galgo
object using the method evolve. When the current number of bigbangs has
reached maxBigBangs value, the process ends.

maxSolutions The maximum number of solutions. If the total number of solutions collected
achieve maxSolutions value the process ends. A solution is defined when the
goalFitness has been reach. When the Galgo object ends and goalFitness
has not been reached, The best chromosome is NOT saved unless onlySolutions
is FALSE, in this case maxSolutions and maxBigBangs are equivalent.

collectMode The type of result to collect for further analysis. "galgos" saves every evolved
galgo object, thus it consumes a lot of memory; more than 100 is perhaps not
recommendable. "chromosomes" and "bigbangs" save the best chromo-
some, its fitness, and fitness evolution in the BigBang object. "bigbang"
saves the BigBang object to disk whereas "chromosome" saves only the list
of chromosomes.

onlySolutions
If TRUE only solutions that has been reach the goalFitness are saved. Oth-
erwise, all solutions are saved and counted as “solution” and $solutions
variable contains the real status.

verbose Instruct the BigBang to display the general information about the process. When
verbose==1 this information is printed every evolution. In general every
verbose number of generation would produce a line of output. Of course
if verbose==0 would not display a thing at all.

BigBang 9

callPreFunc A user-function to be called before every evolution. It should receive the BigBang
and Galgo objects. If the result is NA, the process ends.

callBackFunc A user-function to be called after every evolution. It should receive the BigBang
and Galgo objects. If the result is NA, the process ends. When callBackFunc
is for instance plot the trace of the evolution is nicely viewed in a plot; how-
ever, in long runs it can consume time and memory.

callEnhancerFunc
A user-function to be called after every evolution to improve the solution. It
should receive a Chromosome and the BigBang objects as parameters, and
must return a new Chromosome object. If the result is NULL nothing is saved.
The result replace the original evolved chromosomes, which is saved in evolved-
Chromosomes list variable in the BigBang object. For functional genomics
data, we have included two general routines called geneBackwardElimination
and robustGeneBackwardElimination to generate “enhanced” chro-
mosomes.

data Any user-data can be stored in this variable (but it is not limited to data, the
user can insert any other like myData, mama.mia or whatever in the ...
argument).

saveFile The file name where the objects would be saved (see collectMode).
saveFrequency

How often the operation of saving would occur. Saving is a time-consuming
operation, low values may degradate the performance.

saveVariableName
The prefereable variable name used for saving (this will be needed when load-
ing).

saveMode Any combinations of the two options compress and unObject. It can be
character vector length 1 or larger. For example, saveMode=="compress+unObject"
would call unObject and save the file using compress=TRUE. The vec-
tor c("object","compress") (or shorter c("compress")) would save
the BigBang object and compressed. It is not recommended to save the crude
object because the functions varibles are stuck to environments and R will try to
save those environments together, the result can be a waste of disk space and sav-
ing time. We strongly recommend saveMode="unObject+compress".

geneNames Gene names (if they are discrete and finite).

sampleNames Sample names (if any).

classes Class of the original samples (useful for classification problems only).
saveGeneBreaks

In the case of variable selection for microarray data (and other problems with
discrete and finite genes), a summary on the genes selected is computed and
saved in each evolution. It is used to facilitate the computation for some plots
and others methods. For no-finite gene applications, it may be useful interpreting
saveGeneBreaks as the breaks needed to create an histogram based on the
genes included in the “best”.

gcFrequency How often the garbage collector would be called. Useful if memory needs to be
collected during the process.

gcCalls How many calls to garbage collector (we have seen that many consecutive calls
to gc() is better [R < 2.0]).

call Internal use.

... Other user named values to include in the object.

10 BigBang

Class

Package: galgo
Class BigBang

Object
~~|
~~+--BigBang

Directly known subclasses:

public static class BigBang
extends Object

Fields and Methods

Methods:

activeChromosomeSet Focus the analysis to different sets of chromosomes.
addCount Add a chromosome to rank and frequency stability counting.
addRandomSolutions Adds random pre-existed solutions.
as.matrix Prints the representation of the BigBang object.
assignParallelFile Assigns a different saveFile value for parallelization.
blast Evolves Galgo objects saving the results for further analysis.
buildCount Builds the rank and frequency stability counting.
classPredictionMatrix Predicts class for samples from chromosomes.
computeCount Compute the counts for every gene from a set of chromosomes..
confusionMatrix Computes the class confusion matrix from a class prediction matrix.
distanceImportanceNetwork Converts geneImportanceNetwork matrix to distance matrix.
filterSolution Filters solutions.
fitnessSplits Computes the fitness function from chromosomes for different splits.
formatChromosome Converts chromosome for storage in BigBang object.
forwardSelectionModels Gets the “best” models using top-ranked genes and a forward-selection strategy.
geneCoverage Computes the fraction of genes present in the top-rank from the total genes present in chromosomes.
geneFrequency Computes the frequency of genes based on chromosomes.
geneImportanceNetwork Computes the number of times a couple of top-ranked-genes are present in models.
geneRankStability Computes the rank history for top-ranked genes.
getFrequencies Computes gene freqencies.
heatmapModels Plots models using heatmap plot.
loadParallelFiles Load all files saved during the parallelization.
meanFitness Computes the “mean” fitness from several solutions.
meanGeneration Computes the mean number of generations requiered to reach a given fitness value.
mergeBangs Merges the information from other BigBang objects.
pcaModels Plots models in principal components space.
plot Plots about the collected information in a BigBang object.
predict Predicts the class or fitting of new set of samples.
print Prints the representation of a BigBang object.
saveObject Saves the BigBang object into a file in a suitable format.
sensitivityClass Computes the sensitivity of class prediction.
specificityClass Computes the specificity of class prediction.

Chromosome 11

summary Prints the representation of the BigBang object.

Methods inherited from Object:
as.list, unObject, $, $<-, [[, [[<-, as.character, attach, clone, detach, equals, extend, finalize, get-
Fields, getInstanciationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf

References

Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Pub. Co. ISBN: 0201157675

See Also

Gene, Chromosome, Niche, World, Galgo, configBB.VarSel(), configBB.VarSelMisc().

Examples

Not run:
cr <- Chromosome(genes=newCollection(Gene(shape1=1, shape2=100),5))
ni <- Niche(chromosomes=newRandomCollection(cr, 10))
wo <- World(niches=newRandomCollection(ni,2))
ga <- Galgo(populations=newRandomCollection(wo,1), goalFitness = 0.75,

callBackFunc=plot,
fitnessFunc=function(chr, parent) 5/sd(as.numeric(chr)))

#evolve(ga) ## not needed here

bb <- BigBang(galgo=ga, maxSolutions=10, maxBigBangs=10, saveGeneBreaks=1:100)
blast(bb)
it performs 10 times evolve() onto ga object
every time, it reinitilize and randomize
finally, the results are saved.
plot(bb)

#it is missing a microarray classification example

End(Not run)

Chromosome The representation of a set of genes for genetic algorithms

Description

Represents a set of genes for the genetic algorithm. The chromosome contains all current values
of each gene and will be evaluated using a “fitness” function similar to those defined by Goldberg.
The fitness function normally depends on the Galgo object.

See references for Genetic Algorithms.

12 Chromosome

Usage

Chromosome(id=0,
genes=list(),
getValues=function(x, ...) unlist(lapply(x, ...)),
decode=function(x) genes(x),
values=list(),
...)

Arguments

id A way to identify the object.

genes A list of defined Gene objects composing the chromosome.

getValues A function to be evaluated for every gene to obtain a value. In general, the result
could be any object in a list. In particular, the default is a vector of current gene
values.

decode A function that converts the chromosome representation in real values. It is
used mainly for output purposes and for frequency counting. It has no effect for
variable selection in microarray data since the default decode is directly the
gene value.

values The specific initial values. If value is not specified, getValues function is
ran to obtain initial values.

... Other user named values to include in the object.

Class

Package: galgo
Class Chromosome

Object
~~|
~~+--Chromosome

Directly known subclasses:

public static class Chromosome
extends Object

Fields and Methods

Methods:

as.double Converts the chromosome values (genes) to its numerical representation.
clone Clones itself and its genes.
decode Converts the gene values to user-readable values.
generateRandom Generates random values for all genes in the chromosome.
genes Converts the genes values to a numeric vector.
length Gets the number of genes defined in the chromosome.

classPrediction 13

mutate Mutates a chromosome in specific positions.
newCollection Generates a list of chromosomes cloning the original chromosome object.
newRandomCollection Creates a list of cloned chromosomes object with its internal values generated by random.
print Prints the representation of the chromosome object.
reInit Erases all internal values in order to re-use the object.
summary Prints the representation of the chromosome object and all its genes.

Methods inherited from Object:
as.list, unObject, $, $<-, [[, [[<-, as.character, attach, clone, detach, equals, extend, finalize, get-
Fields, getInstanciationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf

References

Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Pub. Co. ISBN: 0201157675

See Also

Gene. Niche. World. Galgo. BigBang.

Examples

cr <- Chromosome(genes=newCollection(Gene(shape1=1, shape2=100),5))
cr

classPrediction Function used to predict class evaluating a fitness function in many
train-test sets

Description

Function used to predict class evaluating a fitness function in many train-test sets.

Usage

classPrediction(chr, parent, splits = 1:length(parent$data$splitTrain), set = parent$data$testErrorWeights, mode = c("sum", "probability", "class"))

Arguments

chr Chromosome or vector object.

parent Parent object, commonly BigBang object.

splits Which sets of splits will be used to compute the fitness function. Default to all
splits defined in parent$data$splitTrain.

set Weigths used in training and test sets. Vector of two values. The first is the
weight of train error. The second is the weight of test error. The default value
is taken from parent$data$testErrorWeights whose default is c(0,1) (considering
only test error).

14 configBB.VarSel

mode The type of value to return. "sum" returns a matrix with the number of times
a sample (rows) has been predicted as any class (columns). The values are pro-
portional to train and test weights. "probability" convertion of "sum" to
probabilities dividing each row by its sum. "class" returns a vector of the
predicted class given by majority vote.

Value

A matrix or vector depending on mode paramater.

Note

This function is designed to be used in forwardSelectionModels

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

forwardSelectionModels.BigBang, modelSelection , fitness , configBB.VarSel

configBB.VarSel Creates and configure all objects needed for a “variable selection for
classificacion” problem

Description

Creates and configure all objects needed for a “variable selection for classificacion” problem. It
configures Gene, Chromosome, Niche, World, Galgo and BigBang objects.

Usage

configBB.VarSel(
file=NULL,
data=NULL,
classes=NULL,
train=rep(2/3,333),
test=1-train,
force.train=c(),
force.test=c(),
train.cases=FALSE,
main="project",
classification.method=c("knn","mlhd","svm","nearcent","rpart","nnet","ranforest","user"),
classification.test.error=c(0,1),
classification.train.error=c("kfolds","splits","loocv","resubstitution"),
classification.train.Ksets=-1,
classification.train.splitFactor=2/3,
classification.rutines=c("C","R"),
classification.userFitnessFunc=NULL,
scale=(classification.method[1] %in% c("knn","nearcent","mlhd","svm")),
knn.k=3,

configBB.VarSel 15

knn.l=1,
knn.distance=c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "pearson", "kendall", "spearman", "absolutepearson","absolutekendall", "absolutespearman"),
nearcent.method=c("mean","median"),
svm.kernel=c("radial","polynomial","linear","sigmoid"),
svm.type=c("C-classification", "nu-classification", "one-classification"),
svm.nu=0.5,
svm.degree=4,
svm.cost=1,
nnet.size=2,
nnet.decay=5e-4,
nnet.skip=TRUE,
nnet.rang=0.1,
geneFunc=runifInt,
chromosomeSize=5,
populationSize=-1,
niches=1,
worlds=1,
immigration=c(rep(0,18),.5,1),
mutationsFunc=function(ni) length(ni),
crossoverFunc=function(ni) round(length(ni)/2,0),
crossoverPoints=round(chromosomeSize/2,0),
offspringScaleFactor=1,
offspringMeanFactor=0.85,
offspringPowerFactor=2,
elitism=c(rep(1,9),.5),
goalFitness=0.90,
galgoVerbose=20,
maxGenerations=200,
minGenerations=10,
galgoUserData=NULL,
maxBigBangs=1000,
maxSolutions=1000,
onlySolutions=FALSE,
collectMode="bigbang",
bigbangVerbose=1,
saveFile="?.Rdata",
saveFrequency=50,
saveVariable="bigbang",
callBackFuncGALGO=function(...) 1,
callBackFuncBB=plot,
callEnhancerFunc=function(chr, parent) NULL,
saveGeneBreaks=NULL,
geneNames=NULL,
sampleNames=NULL,
bigbangUserData=NULL
)

Arguments

file The file containing the data. First row should be sample names. First column
should be variable names (genes). Second row must be the class for every sam-
ple if classes is not provided.

16 configBB.VarSel

data If a file is not provided, data is the a data matrix or data frame with samples in
columns and genes in rows (with its respective colnames and rownames set). If
data is provided, class must be specified.

classes if a file is not provided, specifies the classes for the data. If the file is provided
and classes is specified, the second row of the file is considered as data.

train A vector of the proportion of random samples to be used as training sets. The
number of sets is determined by the length of train. The train+test
should never be greather than 1. All sets are randomly chosen with the same
proportion of samples per class than the original sample set.

test A vector of the proportion of random samples to be used as testing sets. The
number of sets is determined by the length of train. All sets are randomly
chosen with the same proportion of samples per class than the original sample
set.

force.train A vector with sample indexes forced to be part of all training sets.

force.test A vector with sample indexes forced to be part of all test sets.

train.cases If TRUE, the same number of cases for each class. If numeric vector, then it is
interpreted as the number of samples in training per class

main A string or ID related to your project that will be used in all plots and would
help you to distinguish results from different studies.

classification.method
The method to be used for classification. The current available methods (in this
package) are "knn", "mlhd", "svm", "nearcent" (nearest centroid), "rpart" (recursive partitioning trees), and "nnet" (neural networks, experimental, not recommendable), "ranforest" for Random Forest, "user" is for classification problems but the user provides a specific function.

classification.test.error
Vector of two weights specifing how the fitness function is evaluated to compute
the test error. The first value is the weight of training and the second the weight
of test. The default is c(0,1) which consider only test error. The sum of this
values should be 1.

classification.train.error
Specify how the training set is divided to compute the error in the training set
(in evolve method for Galgo object). The fitness function really compute
1-error where error is always computed from the proportion of samples
that has been incorrectly classified. "kfolds" (k-fold-cross-validation) com-
pute K non overlapping sets (classification.train.Ksets) attempting
to conserve class proportions. "splits" compute K (classification.train.Ksets)
random splits. "loocv" (leave-one-out-cross-validation) compute K=training samples.
"resubstitution" no folding at all; it is faster and provided for quick
overviews.

classification.train.Ksets
The number of training set folds/splits. Negative means automatic detection
(n=samples, max(min(round(13-n/11),n),3)).

classification.train.splitFactor
When classification.train.error=="splits", specifies the pro-
portion of samples used in spliting the training set.

classification.rutines
For most of the methods, R and C code has been provided. C code is preferred for
performance reason, however finding mistakes is easier in R. Besides, the exam-
ple code could be used as a guide for new user fitness functions. "rpart" has
not C code. "svm" has only some improvments removing redundancy checks.

configBB.VarSel 17

classification.userFitnessFunc
For classification.method == "user", specify the function that would
be used to compute the accuracy and class prediction. The required prototype is
function(chr, parent, tr, te, result) where chr is the chro-
mosome to be evaluated, a convertion using as.numeric is commonly needed
to extract the exact values from the chromosome. parentwould be the BigBang
object where all their variables are exposed. The fitness function commonly use
parent$data$data, which has been trasposed. tr is the vector of samples
(rows) that MUST be used as training and te the samples that must be used as
test. They can correspond to training and test in the evolution or in any other
context (as the computation of the confusion matrix or the forward selection).
The fitness function should return the result in two different formats, which is
specified in the result parameter. result is 0 (zero) when the predicted
class for the test is required (as an integer, not as a factor) otherwise the it is
expected the number of correctly classified samples from the test vector.

scale TRUE instruct to scale all rows for zero mean and unitary variance. By default,
scale is TRUEwhen classification.method is "knn","nearcent","mlhd",
or "svm".

knn.k For KNN method, knn.k is the number of nearest neighbours to consider.

knn.l For KNN method, knn.l is the number of minimum neighbours needed to
predict a class.

knn.distance The distance to be used in KNN method. Possible values are "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "pearson", "kendall", "spearman", "absolutepearson","absolutekendall", "absolutespearman"
(see dist method).

nearcent.method
For nearest centroid method, nearcent.method specify the method for com-
puting the centroid ("mean", "median").

nnet.size Parameter passed to nnet.

nnet.decay Parameter passed to nnet.

nnet.skip Parameter passed to nnet.

nnet.rang Parameter passed to nnet.

svm.kernel For SVM (support vector machines) method, specify the kernel method "radial","polynomial","linear" or "sigmoid"
(see svm method in e1071 package).

svm.type For SVM method, specify the type of classificacion.

svm.nu For SVM method and nu-classification specify the nu value.

svm.degree For SVM method and polynomial kernel, specify the degreee value.

svm.cost For SVM method, specify the C value (cost).

nnet. Parameters for neural networks classification. See nnet package.

geneFunc The function that provides random values for genes. The default is runifInt,
which generates a random integer value with a uniform distribution.

chromosomeSize
Specify the chromosome size (the number of variables/genes to be included in a
model). Defaults to 5. See Gene and Chromosome objects.

populationSize
Specify the number of chromosomes per niche. Defaults is min(20,20+(2000-
nrow(data))/400). See Chromosome and Niche objects.

niches Specify the number of niches. Defaults to 2. See Niche, World and Galgo
objects.

18 configBB.VarSel

worlds Specify the number of worlds. Defaults to 1. See World and Galgo objects.

immigration Specify the migration criteria.
mutationsFunc

Specify the function that returns the number of mutations to perform in the pop-
ulation.

crossoverFunc
Specify the function that returns the number of crossover to perform. The default
is the length of the niche divided by 2.

crossoverPoints
Specify the active positions for crossover operator. Defaults to a single point in
the middle of the chromosome. See Niche object.

offspringScaleFactor
Scale factor for offspring generation. Defaults 1. See Niche object.

offspringMeanFactor
Mean factor for offspring generation. Defaults to 0.85. See Niche object.

offspringPowerFactor
Power factor for offspring generation. Defaults to 2. See Niche object.

elitism Elitism probability/flag/vector. Defaults to c(1,1,1,1,1,1,1,1,1,0.5) (elitism present
for 9 generations followed by a 50% chance, then repeated). See Niche object.

goalFitness Specify the desired fitness value (fraction of correct classification). Defaults to
0.90. See Galgo object.

galgoVerbose verbose parameter for Galgo object.
maxGenerations

Maximum number of generations. Defaults to 200. See Galgo object.
minGenerations

Minimum number of generations. Defaults to 10. See Galgo object.
galgoUserData

Additional user data for the Galgo object. See Galgo object.

maxBigBangs Maximum number of bigbang cycles. Defaults to 1000. See BigBang object.

maxSolutions Maximum number of solutions collected. Defaults to 1000. See BigBang
object.

onlySolutions
Save only when a solution is reach. Defaults to FALSE (to use all the informa-
tion, then a filter can be used afterwards). See BigBang object.

collectMode information to collect. Defaults to "bigbang". See BigBang object.
bigbangVerbose

Verbose flag for BigBang object. Defaults to 1. See BigBang object.

saveFile File name where the data is saved. Defaults to NULL which implies the name is
a concatenation of classification.method, method specific parameters,
file and ".Rdata". See BigBang object.

saveFrequency
How often the “current” solutions are saved. Defaults to 50. See BigBang
object.

saveVariable Internal R variable name of the saved file. Defaults to “bigbang”. See BigBang
object.

callBackFuncGALGO
callBackFunc for Galgo object. See Galgo object.

configBB.VarSelMisc 19

callBackFuncBB
callBackFunc for BigBang object. See BigBang object.

callEnhancerFunc
callEnhancerFunc for BigBang object. See BigBang object.

saveGeneBreaks
saveGeneBreaks vector for BigBang object. Defaults to NULL which
means to be computed automatically (recommended). See BigBang object.

geneNames The gene (variable) names if they differ from the first column in file or
rownames(data).

sampleNames The sample names if they differ from first row in file or colnames(data).
bigbangUserData

Additional user data for BigBang object (stored in data variable in BigBang
object returned).

Details

Wrapper function. Configure all objects from parameters.

Value

A ready to use bigbang object.

*** TO DO: EXPLAIN THE STRUCTURE OF "DATA" ***

Author(s)

Victor Trevino

See Also

BigBang.

Examples

Not run:
bb <- configBB.VarSel(...)
bb
blast(bb)

End(Not run)

configBB.VarSelMisc
Creates and configure all objects needed for a “variable selection”

problem

Description

Creates and configure all objects needed for a “variable selection” problem. It configures Gene,
Chromosome, Niche, World, Galgo and BigBang objects.

20 configBB.VarSelMisc

Usage

configBB.VarSelMisc(
file=NULL,
data=NULL,
strata=NULL,
train=rep(2/3,333),
test=1-train,
force.train=c(),
force.test=c(),

main="project",

test.error=c(0,1),
train.error=c("kfolds","splits","loocv","resubstitution"),
train.Ksets=-1, # -1 : automatic detection : max(min(round(13-n/11),n),3) n=samples, n <=50: n/4, n<=100, n/10, else 3
train.splitFactor=2/3,
fitnessFunc=NULL,

scale=FALSE,

geneFunc=runifInt,
chromosomeSize=5,
populationSize=-1,
niches=1,
worlds=1,
immigration=c(rep(0,18),.5,1),

mutationsFunc=function(ni) length(ni),
crossoverFunc=function(ni) round(length(ni)/2,0),
crossoverPoints=round(chromosomeSize/2,0),
offspringScaleFactor=1,
offspringMeanFactor=0.85,
offspringPowerFactor=2,
elitism=c(rep(1,9),.5),
goalFitness=0.90,
galgoVerbose=20,
maxGenerations=200,
minGenerations=10,
galgoUserData=NULL, # additional user data for galgo

maxBigBangs=1000,
maxSolutions=1000,
onlySolutions=FALSE,
collectMode="bigbang",
bigbangVerbose=1,
saveFile="?.Rdata",
saveFrequency=50,
saveVariable="bigbang",
callBackFuncGALGO=function(...) 1,
callBackFuncBB=plot,
callEnhancerFunc=function(chr, parent) NULL,
saveGeneBreaks=NULL,
geneNames=NULL,

configBB.VarSelMisc 21

sampleNames=NULL,
bigbangUserData=NULL # additional user data for bigbang
)

Arguments

file The file containing the data. First row should be sample names. First column
should be variable names (genes). Second row must be the class or strata for
every sample if strata is not provided. The strata is used to balance the train-
test sets relative to different strata. If there are only one strata, use the same
value for all samples.

data If a file is not provided, data is the a data matrix or data frame with samples in
columns and genes in rows (with its respective colnames and rownames set). If
data is provided, strata must be specified.

strata if a file is not provided, specifies the classes or strata of the data. If the file is
provided and strata is specified, the second row of the file is considered as data.
The strata is used to balance the train-test sets relative to different strata. If there
are only one strata, use the same value for all samples.

train A vector of the proportion of random samples to be used as training sets. The
number of sets is determined by the length of train. The train+test
should never be greather than 1. All sets are randomly chosen with the same
proportion of samples per class than the original sample set.

test A vector of the proportion of random samples to be used as testing sets. The
number of sets is determined by the length of train. All sets are randomly
chosen with the same proportion of samples per class than the original sample
set.

force.train A vector with sample indexes forced to be part of all training sets.

force.test A vector with sample indexes forced to be part of all test sets.

main A string or ID related to your project that will be used in all plots and would
help you to distinguish results from different studies.

test.error Vector of two weights specifing how the fitness function is evaluated to compute
the test error. The first value is the weight of training and the second the weight
of test. The default is c(0,1) which consider only test error. The sum of this
values should be 1.

train.error Specify how the training set is divided to compute the error in the training set (in
evolve method for Galgo object). "splits" compute K (train.Ksets)
random splits. "loocv" (leave-one-out-cross-validation) compute K=training samples.
"resubstitution" no folding at all; it is faster and provided for quick
overviews.

train.Ksets The number of training set folds/splits. Negative means automatic detection
(n=samples, max(min(round(13-n/11),n),3)).

train.splitFactor
When train.error=="splits", specifies the proportion of samples used
in spliting the training set.

fitnessFunc Specify the function that would be used to compute the accuracy. The required
prototype is function(chr, parent, tr, te, result) where chr
is the chromosome to be evaluated. parent would be the BigBang ob-
ject where all their variables are exposed. The fitness function commonly use
parent$data$data, which has been trasposed. tr is the vector of samples

22 configBB.VarSelMisc

(rows) that MUST be used as training and te the samples that must be used as
test.

scale TRUE instruct to scale all rows for zero mean and unitary variance. By default,
this value is FALSE.

geneFunc Specify the function that mutate genes. The default is using an integer uniform
distribution function (runifInt).

chromosomeSize
Specify the chromosome size (the number of variables/genes to be included in a
model). Defaults to 5. See Gene and Chromosome objects.

populationSize
Specify the number of chromosomes per niche. Defaults is min(20,20+(2000-
nrow(data))/400). See Chromosome and Niche objects.

niches Specify the number of niches. Defaults to 2. See Niche, World and Galgo
objects.

worlds Specify the number of worlds. Defaults to 1. See World and Galgo objects.

immigration Specify the migration criteria.
mutationsFunc

Specify the function that returns the number of mutations to perform in the pop-
ulation.

crossoverFunc
Specify the function that returns the number of crossover to perform. The default
is the length of the niche divided by 2.

crossoverPoints
Specify the active positions for crossover operator. Defaults to a single point in
the middle of the chromosome. See Niche object.

offspringScaleFactor
Scale factor for offspring generation. Defaults 1. See Niche object.

offspringMeanFactor
Mean factor for offspring generation. Defaults to 0.85. See Niche object.

offspringPowerFactor
Power factor for offspring generation. Defaults to 2. See Niche object.

elitism Elitism probability/flag/vector. Defaults to c(1,1,1,1,1,1,1,1,1,0.5) (elitism present
for 9 generations followed by a 50% chance, then repeated). See Niche object.

goalFitness Specify the desired fitness value (fraction of correct classification). Defaults to
0.90. See Galgo object.

galgoVerbose verbose parameter for Galgo object.
maxGenerations

Maximum number of generations. Defaults to 200. See Galgo object.
minGenerations

Minimum number of generations. Defaults to 10. See Galgo object.
galgoUserData

Additional user data for the Galgo object. See Galgo object.

maxBigBangs Maximum number of bigbang cycles. Defaults to 1000. See BigBang object.

maxSolutions Maximum number of solutions collected. Defaults to 1000. See BigBang
object.

onlySolutions
Save only when a solution is reach. Defaults to FALSE (to use all the informa-
tion, then a filter can be used afterwards). See BigBang object.

configBB.VarSelMisc 23

collectMode information to collect. Defaults to "bigbang". See BigBang object.
bigbangVerbose

Verbose flag for BigBang object. Defaults to 1. See BigBang object.
saveFile File name where the data is saved. Defaults to NULL which implies the name is

a concatenation of classification.method, method specific parameters,
file and ".Rdata". See BigBang object.

saveFrequency
How often the “current” solutions are saved. Defaults to 50. See BigBang
object.

saveVariable Internal R variable name of the saved file. Defaults to “bigbang”. See BigBang
object.

callBackFuncGALGO
callBackFunc for Galgo object. See Galgo object.

callBackFuncBB
callBackFunc for BigBang object. See BigBang object.

callEnhancerFunc
callEnhancerFunc for BigBang object. See BigBang object.

saveGeneBreaks
saveGeneBreaks vector for BigBang object. Defaults to NULL which
means to be computed automatically (recommended). See BigBang object.

geneNames The gene (variable) names if they differ from the first column in file or
rownames(data).

sampleNames The sample names if they differ from first row in file or colnames(data).
bigbangUserData

Additional user data for BigBang object (stored in $data variable in BigBang
object returned).

Details

Wrapper function. Configure all objects from parameters.

Value

A ready to use bigbang object.

*** TO DO: EXPLAIN THE STRUCTURE OF "DATA" ***

Author(s)

Victor Trevino

See Also

BigBang.

Examples

Not run:
bb <- configBB.VarSelMisc(...)
bb
blast(bb)

End(Not run)

24 Galgo

fitness Function used to evaluate a chromosome

Description

Function used to evaluate a chromosome using training and validation sets (second-level training-
test sets) and the selected split.

Usage

fitness(chr, parent)

Arguments

chr Chromosome or vector object.

parent Parent object, commonly BigBang object.

Value

A numeric value with the fitness computed for the chromosome.

Note

This function is designed to be used under configBB.VarSel configuration and depend on split-
TrainKFold and splitValidKFold variables.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

forwardSelectionModels.BigBang, modelSelection, classPrediction, configBB.VarSel

Galgo The representation of a Genetic Algorithm

Description

Represents a genetic algorithm (GA) itself. The basic GA uses at least one population of chromo-
somes, a “fitness” function, and a stopping rule (see references).

The Galgo object is not limited to a single population, it implements a list of populations where any
element in the list can be either a Niche object or a World object. Nervertheless, any user-defined
object that implements evolve, progeny, best, max, bestFitness, and maxFitness
methods can be part of the populations list.

The “fitness” function is by far the most important part of a GA, it evaluates a Chromosome to de-
termine how good the chromosome is respect to a given goal. The function can be sensitive to data
stored in .GlobalEnv or any other object (see *evaluate() for further details). For this pack-
age and in the case of the microarray, we have included several fitness functions to classify samples

Galgo 25

using different methods. However, it is not limited for a classification problem for microarray data,
because you can create any fitness function in any given context.

The stopping rule has three options. First, it is simply a desired fitness value implemented as a
numeric fitnessGoal, and If the maximum fitness value of a population is equal or higher
than fitnessGoal the GA ends. Second, maxGenerations determine the maximum number
of generations a GA can evolve. The current generation is increased after evaluating the fitness
function to the entire population list. Thus, if the current generation reach maxGenerations the
GA stops. Third, if the result of the user-defined callBackFunc is NA the GA stops. In addition,
you can always break any R program using Ctrl-C (or Esc in Windows).

When the GA ends many values are used for futher analysis. Examples are the best chromosome
(best method), its fitness (bestFitness method), the final generation (generation vari-
able), the evolution of the maximum fitness (maxFitnesses list variable), the maximum chromo-
some in each generation (maxChromosome list variable), and the elapsed time (elapsedTime
variable). Moreover, flags like goalScored, userCancelled, and running are available.

Usage

Galgo(id=0,
populations=list(),
fitnessFunc=function(...) 1,
goalFitness=0.9,
minGenerations=1,
maxGenerations=100,
addGenerations=0,
verbose=20,
callBackFunc=function(...) 1,
data=NULL,
gcCall=0,
savePopulations=FALSE,
maxFitnesses=c(),
maxFitness=0,
maxChromosomes=list(),
maxChromosome=NULL,
bestFitness=0,
bestChromosome=NULL,
savedPopulations=list(),
generation=0,
elapsedTime=0,
initialTime=0,
userCancelled=FALSE,
goalScored=FALSE,
running=FALSE,
...)

Arguments

id A way to identify the object.

populations A list of populations of any class World, Niche, or user-defined population.

fitnessFunc The function that will be evaluate any chromosome in the populations. This
function should receive two parameteres, the Chromosome object and the parent
object (defined as a parameter as well). The parent object is commonly a ob-
ject of class BigBang when used combined. Theoretically, the fitness function

26 Galgo

may return a numeric non-negative finite value, but commonly in practice these
values are limited from 0 to 1. The offspring factors in class Niche where
established using the 0-1 range assumption.

goalFitness The desired fitness. The GA will evolve until it reach this value or any other
stopping rule is met. See description section.

minGenerations
The minimum number of generations. A GA evolution will not ends before this
generation number even that fitnessGoal has been reach.

maxGenerations
The maximum number of generations that the GA could evolve.

addGenerations
The number of generations to over-evolve once that goalFitness has been
met. Some solutions reach the goal from a large “jump” (or quasi-random mu-
tation) and some other from “plateau”. addGenerations helps to ensure the
solutions has been “matured” at least that number of generations.

verbose Instruct the GA to display the general information about the evolution. When
verbose==1 this information is printed every generation. In general every
verbose number of generation would produce a line of output. Of course if
verbose==0 would not display a thing at all.

callBackFunc A user-function to be called after every generation. It should receive the Galgo
object itself. If the result is NA the GA ends. For instance, if callBackFunc
is plot the trace of all generations is nicely viewed in a plot; however, in long
runs it can consume time and memory.

data Any user-data can be stored in this variable (but it is not limited to data, the
user can insert any other like myData, mama.mia or whatever in the ...
argument).

gcCall How often 10 calls to garbage collection function gc(). This sometimes helps
for memory issues.

savePopulations
If TRUE, it save the population array in a savedPopulations variable of the galgo
object.

maxFitnesses Internal object included for generality not inteded for final users.

maxFitness Internal object included for generality not inteded for final users.
maxChromosomes

Internal object included for generality not inteded for final users.
maxChromosome

Internal object included for generality not inteded for final users.

bestFitness Internal object included for generality not inteded for final users.
bestChromosome

Internal object included for generality not inteded for final users.
savedPopulations

Internal object included for generality not inteded for final users.

generation Internal object included for generality not inteded for final users.

elapsedTime Internal object included for generality not inteded for final users.

initialTime Internal object included for generality not inteded for final users.
userCancelled

Internal object included for generality not inteded for final users.

Galgo 27

goalScored Internal object included for generality not inteded for final users.

running Internal object included for generality not inteded for final users.

... Other user named values to include in the object (like pMutation, pCrossover or
any other).

Class

Package: galgo
Class Galgo

Object
~~|
~~+--Galgo

Directly known subclasses:

public static class Galgo
extends Object

Fields and Methods

Methods:

best Returns the best chromosome.
bestFitness Returns the fitness of the best chromosome.
clone Clones itself and all its objects.
evaluate Evaluates all chromosomes with a fitness function.
evolve Evolves the chromosomes populations of a Galgo (Genetic Algorithm).
generateRandom Generates random values for all populations in the Galgo object.
length Gets the number of populations defined in the Galgo object.
max Returns the chromosome whose current fitness is maximum.
maxFitness Returns the fitness of the maximum chromosome.
plot Plots information about the Galgo object.
print Prints the representation of a Galgo object.
refreshStats Updates the internal values from the current populations.
reInit Erases all internal values in order to re-use the object.
summary Prints the representation and statistics of the galgo object.

Methods inherited from Object:
as.list, unObject, $, $<-, [[, [[<-, as.character, attach, clone, detach, equals, extend, finalize, get-
Fields, getInstanciationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf

28 galgo.dist

References

Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Pub. Co. ISBN: 0201157675

See Also

Gene, Chromosome, Niche, World, BigBang, configBB.VarSel(), configBB.VarSelMisc().

Examples

cr <- Chromosome(genes=newCollection(Gene(shape1=1, shape2=100),5))
ni <- Niche(chromosomes = newRandomCollection(cr, 10))
wo <- World(niches=newRandomCollection(ni,2))
ga <- Galgo(populations=list(wo), goalFitness = 0.75, callBackFunc=plot,

fitnessFunc=function(chr, parent) 5/sd(as.numeric(chr)))
ga
evolve(ga)

missing a classification example

galgo.dist Computes the distance in GALGO for KNN based methods

Description

KNN function does not include other common distances. This function includes more distances
computations.

Usage

galgo.dist(x, method, p = 2)

Arguments

x Matrix to compute distnaces

method Any of "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski".
See dist function.

p Minkowski power.

Value

A vector class dist.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

dist

Gene 29

Gene The representation of a gene in a chromosome for genetic algorithms

Description

Represents the behaviour of a gene in a chromosome for the genetic algorithm. The default proper-
ties are supposed to be used in the variable selection problem for microarray data. However, they
can be used for any other problem. In addition, any other wanted variable can be added.

See references for Genetic Algorithms.

Usage

Gene(id=0, shape1=0, shape2=0, generateFunc=runifInt, ...)

Arguments

id To identify the object.

shape1 Parameter for a distribution. Used to generate a random value for a gene (mean,
minimum, alfa, etc).

shape2 Parameter for a distribution. Used to generate a random value for a gene (sd,
maximum, beta, etc).

generateFunc Function that generate a random value for a gene using the above shape param-
eters. This function would be used to get an initial value and to mutate a gene.
The default is a random uniform integer with shape1 as minimum and shape2
as maximum (either inclusive). The parameters used in the call are object, n,
shape1, and shape2. The random value generated is not saved. If future values
depends on the previous, you must save it explicitly in the object.

... Other user named values to include in the object.

Class

Package: galgo
Class Gene

Object
~~|
~~+--Gene

Directly known subclasses:

public static class Gene
extends Object

Fields and Methods

Methods:

30 geneBackwardElimination

as.double Converts the gene parameters (shape1, shape2) to its numerical representation.
as.matrix Converts the gene parameters (shape1, shape2) to matrix.
generateRandom Generates a random value from the defined function.
mutate Mutates a gene.
newCollection Generates a list of cloned objects.
newRandomCollection Generates a list of cloned objects and random values.
print Prints the representation of a gene object.
reInit Erases all internal values in order to re-use the object.
summary Prints the representation of a gene object.

Methods inherited from Object:
as.list, unObject, $, $<-, [[, [[<-, as.character, attach, clone, detach, equals, extend, finalize, get-
Fields, getInstanciationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf

References

Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Pub. Co. ISBN: 0201157675

See Also

Chromosome. Niche. World. Galgo. BigBang. runifInt.

Examples

ge <- Gene(shape1=1, shape2=100)
ge

geneBackwardElimination
Searches for shorter or better models using backward elimination

strategy

Description

Searches for shorter or better models using backward elimination strategy. Recursively eliminates
variables/genes from a chromosome one by one computing the fitness function. This function is
specially designed to be used in the BigBang object and for variable selection problems.

Usage

geneBackwardElimination(chr, bigbang, result=c("highest","shortest", "selected", "visited"), minChromosomeSize=2, fitnessFunc=bigbang$galgo$fitnessFunc, fitnessAid=-0.01, verbose=FALSE, ...)

geneBackwardElimination 31

Arguments

chr Original chromosome object (or numeric vector).

bigbang The BigBang object to be used to call the fitness function.

result The type of result needed. "highest" returns the visited chromosome whose
fitness was highest. Ties are resolved using the shortest chromosome and finally
by random. "shortest" returns the visited chromosome whose length was
minimum and fitness greather than or equal to the original. Ties are resolved by
highest fitness and finally by random. "visited" returns a list of all visited
chromosomes. "selected" only the chromosomes with fitness greather than
or equal to original fitness.

minChromosomeSize
The minimum possible size of a chromosome. The default is 2.

fitnessFunc The fitness function used to evaluate the chromosomes. The default is the usage
of bigbang$galgo$fitnessFunc.

fitnessAid To avoid local minima, fitnessAid is an amount to be reduced to original
fitness in order to try search for better fitness. When it is negative, it is inter-
preted as percentage value to reduce from the original fitness. If fitnessAid
is positive, it is substracted from original fitness.

verbose Display internal steps for debugging purposes.

... Additional arguments to fitnessFunc.

Details

Removes one gene/variable at the time and compute the fitness. If the fitness is greather than or
equal to original “reduced” fitness, another attempt to remove other variable will be performed.
The result might be a reduced chromosome with same or better fitness.

Value

A chromosome when result=="highest" or result=="smallest" and a data frame
otherwise.

Author(s)

Victor Trevino

See Also

BigBang, robustGeneBackwardElimination.

Examples

Not run:
rchr <- lapply(bb$bestChromosomes[1:100],geneBackwardElimination, bb, result="shortest")
barplot(table(unlist(lapply(rchr,length))),main="Length of Shortened Chromosomes (evaluated in training)")

rchr <- lapply(bb$bestChromosomes[1:100],robustGeneBackwardElimination, bb, result="shortest")
barplot(table(unlist(lapply(rchr,length))),main="Length of Shortened Chromosomes")

End(Not run)

32 generateRandomModels

generateRandomModels
Generates Random shorter models

Description

Evaluate random models using the specified gene indexes.

Usage

generateRandomModels(genes, bigbang,
size=trunc(length(genes)/2), n=100,
fitnessFunc=bigbang$data$modelSelectionFunc,
models=FALSE, ...)

Arguments

genes Original chromosome object (or numeric vector).

bigbang The BigBang object to be used to call the fitness function.

size Size of new random models.

n Number of models

fitnessFunc The fitness function used to evaluate the chromosomes. The default is the usage
of bigbang$galgo$fitnessFunc.

models Logical value.

... Other parameters passed to fitnessFunc.

Value

If models==TRUE, a vector of resulted fitness for random models, otherwise a list with models
(matrix, cols=models) and their fitness (vector) is returned.

Author(s)

Victor Trevino

See Also

BigBang.

Examples

Not run:
rm <- generateRandomModels(geneFrequency(bb,value="index")[1:50],bb,size=5,n=100,models=T)
rm

End(Not run)

knn_C_predict 33

knn_C_predict Class prediction using KNN method calling the C code

Description

C code for knn. There is a knn_R_predict but R code is slower, which is included for debugging
and educational purposes.

Usage

knn_C_predict(chr, parent, tr, te, result)

Arguments

chr Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

knn

knn_R_predict Class prediction using KNN method calling the R code

Description

R code is slower than C code. This function is included for debugging and educational purposes.

Usage

knn_R_predict(chr, parent, tr, te, result)

34 loadObject

Arguments

chr Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

nnet

loadObject Load saved data of class Object and use reObject as necessary

Description

Load the data from a file into the .GlobalEnv (or any other enviroment). If variables were con-
verted to a list using unObject, this variables are converted to original object using reObject
method.

Usage

loadObject(file=NULL, envir=.GlobalEnv, verbose=T, reobjectize=T, compatibilize=TRUE, ...)

Arguments

file The file to load.

envir The environment to load the data. The default is .GlobalEnv.

verbose Displays progress.

reobjectize Specify if reObject method should be called. Defaults to TRUE.
compatibilize

Compatibilze chromosomes built on previous versions.

... Additional arguments to reObject

Details

Load the data from a file into the .GlobalEnv (or any other enviroment). If variables were con-
verted to a list using unObject, this variables are converted to original object using reObject
method.

mlhd_C_predict 35

Value

A data frame with variable names and class of loaded objects.

Warning

It could take some seconds for large and/or complex objects/files.

Author(s)

Victor Trevino

See Also

unObject, reObject.

Examples

library(R.oo) # needed library
o <- Object()
o$x = 1
o$y = 2
o$x
o$y
o
class(o)
names(o)
uo <- unObject(o)
uo
class(uo)
save(uo, file="uo.Rdata")

perhaps other session here
library(R.oo)
loadObject("uo.Rdata")
uo
class(uo)
the class is the original from the original object (o in this case)

equivalent to:
library(R.oo)
load("uo.Rdata")
uo <- reObject(uo)
uo
class(uo)

mlhd_C_predict Class prediction using Maximum Likelihood Discriminant Functions
method calling the C code

Description

C code for mlhd. There is a mlhd_R_predict but R code is slower, which is included for debugging
and educational purposes.

36 mlhd_R_predict

Usage

mlhd_C_predict(chr, parent, tr, te, result)

Arguments

chr Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

mlhd_R_predict Class prediction using Maximum Likelihood Discriminant Functions
method calling the R code

Description

R code is slower than C code. This function is included for debugging and educational purposes.

Usage

mlhd_R_predict(chr, parent, tr, te, result)

Arguments

chr Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

modelSelection 37

modelSelection Function used to evaluate a fitness function in many train-test sets

Description

Function used to evaluate a fitness function in many train-test sets

Usage

modelSelection(chr, parent, splits=1:length(parent$data$splitTrain), set=parent$data$testErrorWeights)

Arguments

chr Chromosome or vector object.

parent Parent object, commonly BigBang object.

splits Which sets of splits will be used to compute the fitness function. Default to all
splits defined in parent$data$splitTrain.

set Weigths used in training and test sets. Vector of two values. The first is the
weight of train error. The second is the weight of test error. The default value
is taken from parent$data$testErrorWeights whose default is c(0,1) (considering
only test error).

Value

A vector with the fitness computed for each split weighted according to set parameter.

Note

This function is designed to be used in forwardSelectionModels

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

forwardSelectionModels.BigBang, classPrediction, fitness, configBB.VarSel

nearcent_C_predict Class prediction using the nearest centroid method calling the C code

Description

C code for nearest centroid. There is a nearcent_R_predict but R code is slower, which is included
for debugging and educational purposes.

Usage

nearcent_C_predict(chr, parent, tr, te, result)

38 nearcent_R_predict

Arguments

chr Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

nearcent_R_predict Class prediction using the nearest centroid method calling the R code

Description

R code is slower than C code. This function is included for debugging and educational purposes.

Usage

nearcent_R_predict(chr, parent, tr, te, result)

Arguments

chr Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

Niche 39

Niche The representation of a set of chromosomes for genetic algorithms

Description

Niche represents a set of chromosomes for the genetic algorithm. The niche can generate a progeny
that may be more adapted to certains tasks (or enviroment, see Goldberg). To decide which chro-
mosomes are more suitable to be chosen as “parents”, every chromosome in the niche is evaluated
using a “fitness” function. The selected chromosomes are mated using crossover to produce diver-
sity. Finally the chromosomes are mutated and the new progeny is ready for next generation.

The basic idea to generate a progeny is a random selection biased toward the best chromosomes
(see Goldberg). We implented this idea as a weighted probability for a chromosome to be selected
using the formula:

p = scale * max(0,fitness - mean * mean(fitness))\^\ power

where scale, mean and power are the properties of the niche (offspringScaleFactor, offspringMeanFactor and offspringPowerFactor
respectively). The default values were selected to be reasonably bias when the variance in the fitness
are both high (at early generations) and low (in late generatios).

The crossover mechanism needs to know the positions whose chromosomes can actually mate
(crossoverPoints). The number of crossovers can be customized with crossoverFunc
(*crossover()).

The elitism mechanism (elitism variable) are implemented replacing a random chromosome
from the niche at the end of the progeny process (*progeny()).

The Niche object keeps a record of the number of generations, the maximum chromosome in the
niche, and the best chromosome ever known (see *best() for an example).

The length of the niche is static. Nevertheless this behaviour (and any other) can be customised
overwriting original methods (like progeny or crossover) methods. However, this is intend to be
used only for experienced users.

The niche is considered a “closed population”, this means mating with chromosomes within the
same niche. Migration mechanism uses niches to exchange chromosomes between them, which is
implemented in World object (see World).

Usage

Niche(id=0,
chromosomes=list(),
offspringScaleFactor=1,
offspringMeanFactor=0.85,
offspringPowerFactor=2,
crossoverPoints=0,
mutationsFunc=function(.O) length(.O),
crossoverFunc=function(.O) length(.O)/2,
elitism=1,
generation=0,
fitness=0,
maxFitness=0,
bestFitness=0,
maxChromosome=NULL,
bestChromosome=NULL,
...)

40 Niche

Arguments

id A way to identify the object.

chromosomes A list of defined chromosomes composing the niche.
offspringScaleFactor

The offspringScaleFactor parameter. See description.
offspringMeanFactor

The offspringMeanFactor parameter. See description.
offspringPowerFactor

The offspringPowerFactor parameter. See description.
crossoverPoints

Specific positions at which the chromosomes can be mated. Should be from 2
to minimum possible length of any chromosome in the niche.

mutationsFunc
A function returning the final number of mutations in the niche. It receives the
Niche object as parameter. To implement “probability of mutation” instead,
add a variable like pMutation in the constructor and multiply by the length of
the niche and the length of the chromosome in the function (function(niche) niche$pMutation * length(niche) * length(niche$chromosomes[[1]])).

crossoverFunc
A function returning the final number of crossovers in the niche. It receives the
Niche object as parameter. To implement “probability of crossover” instead,
add a variable like pCrossOver in the constructor and multiply by the length
of the niche in the function. (function(niche) niche$pCrossOver * length(niche)).

elitism Controls the elitism mechanism. Elitism is desired to find solutions quicker,
but it may be a nuisance when it is trapped in strong attractors. Therefore, in
general, it may be a probability. Furthermore, it can be a vector of probabilities
where the index is controlled by generation. If the current generation is greather
than the length of this vector, a cycled version is used (starting from the first
value).

fitness The current fitness. It should be 0 initially, but it is included for generalization.

bestFitness The best fitness ever visited. It should be 0 initially. Included for generalization.

maxFitness The maximum fitness from the current chromosomes. It should be 0 initially,
but it is included for generalization.

maxChromosome
The chromosome whose fitness is maximum from the current chromosomes. It
should be NULL initially, but it is included for generalization.

bestChromosome
The chromosome whose fitness is maximum visited ever. It should be NULL
initially, but it is included for generalization.

generation For internal uses only.

... Other user named values to include in the object (like pMutation, pCrossover or
any other).

Class

Package: galgo
Class Niche

Object
~~|

Niche 41

~~+--Niche

Directly known subclasses:

public static class Niche
extends Object

Fields and Methods

Methods:

as.double Converts the chromosome values (genes) to a vector.
as.matrix Converts the chromosome values (genes) to a matrix.
best Returns the best chromosome of the niche.
bestFitness Returns the fitness of the best chromosome in the niche.
clone Clones itself and its chromosomes.
crossover Performs crossover between chromosomes of the niche.
evaluate Evaluates the chromosome using a fitness function.
generateRandom Generates random values for all genes contained in all chromosomes in the niche.
getFitness Returns the fitness vector related to chromosomes.
length Gets the number of chromosomes defined in the niche.
max Returns the chromosome in the niche whose current fitness is maximum.
maxFitness Returns the fitness of the maximum chromosome in the niche.
mutate Mutates a niche calling mutate method for all chromosomes.
newCollection Generates a list of cloned niches.
newRandomCollection Creates a list of cloned niches with its internal values generated by random.
offspring Overwrites the new niche selecting a new population from the best chromosomes.
plot Plots information about niche object.
print Prints the representation of a niche object.
progeny Performs offspring, crossover, mutation, and elitism mechanism to generate the “evolved” niche.
refreshStats Updates the internal values from the current population.
reInit Erases all internal values in order to re-use the object.
scaling Assigns a weight for every chromosome to be selected for the next generation.
summary Prints the representation and statistics of the niche object.

Methods inherited from Object:
as.list, unObject, $, $<-, [[, [[<-, as.character, attach, clone, detach, equals, extend, finalize, get-
Fields, getInstanciationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf

References

Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Pub. Co. ISBN: 0201157675

42 nnet_R_predict

See Also

Gene, Chromosome, World, Galgo, BigBang.

Examples

cr <- Chromosome(genes=newCollection(Gene(shape1=1, shape2=100),5))
ni <- Niche(chromosomes=newRandomCollection(cr, 10))
ni

in average, one of 10 genes can be mutated
mf <- function(niche) niche$pMutations * length(niche) * length(niche$chromosomes[[1]])
ni2 <- Niche(chromosomes=newRandomCollection(cr, 10),

mutationsFunc=mf,
pMutations=1/10)
ni2 # random initial niche
mutate(ni2) # returns the chromosomes indexes that were mutated
ni2 # mutated niche

nnet_R_predict Class prediction using the neural networks method calling the R code

Description

neural networks R code for prediction.

Usage

nnet_R_predict(x, parent, tr, te, result, ...)

Arguments

x Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

... Not used. Included for package compatbility documentation purposes.

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

nnet

randomforest_R_predict 43

randomforest_R_predict
Class prediction using RandomForest method calling the R code

Description

Prediction using random forest from randomForest package.

Usage

randomforest_R_predict(chr, parent, tr, te, result)

Arguments

chr Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

knn

reObject Creates proper extended Object from a list obtained by unObject

Description

Rebuilds an object to its original class from a list which was usually obtained using unObject. The
original class is deduced using the Class. value and its S3 constructor will be called using all
other values as properties.

Usage

reObject(o, showStructure = 0)

44 reObject

Arguments

o The list attempted to convert to its original Object.
showStructure

Flag to show/debug the conversion course. It can be 1, 2 or 0.

Details

The original class (x$Class. value) is called without any parameter, then all properties (names)
in the list are set using assign. The procedure is recursive called if an object of class list is found
inside x. If the original object was extended from Object, this object have to be already defined
using S3 methodology, otherwise an error would occur.

Value

Object of original class given by x$Class.

Warning

It could take some seconds for large and/or complex objects.

Note

It is very important that if the original class was extendend from Object, this class and its methods
are already defined, otherwise unexpected behaviour and/or errors would occur.

Author(s)

Victor Trevino

See Also

unObject.

Examples

library(R.oo) # needed library
o <- Object()
o$x = 1
o$y = 2
o$x
o$y
o
class(o)
names(o)
uo <- unObject(o)
uo
x <- reObject(uo)
class(x)
names(x)
x$x
x$y

saving/retriving

robustGeneBackwardElimination 45

library(R.oo)
o <- Object()
o$x = 1
o$y = 2
uo <- unObject(o)
save(uo, file="uo.Rdata")
perhaps other session here
library(R.oo)
#if your object requiere other sub-class (extend Object) and/or method definition,
#load it here before using reObject otherwise an error would occur.
load("uo.Rdata")
class(uo) ## uo now is a list
uo
x <- reObject(uo)
class(x) ### now x is Object
names(x)
x$x
x$y
x

robustGeneBackwardElimination
Searches for shorter or better models using backward elimination

strategy

Description

Searches for shorter or better models using backward elimination strategy. Recursively eliminates
variables/genes from a chromosome one by one computing the fitness function. This function is
specially designed to be used in the BigBang object and for variable selection problems.

Usage

robustGeneBackwardElimination(chr, bigbang, fitnessFunc=bigbang$data$modelSelectionFunc, ...)

Arguments

chr Original chromosome object (or numeric vector).

bigbang The BigBang object to be used to call the fitness function.

fitnessFunc The fitness function used to evaluate the chromosomes. The default is the usage
of bigbang$data$modelSelectionFunc.

... Additional Arguments passed to geneBackwardElimination.

Details

Removes one gene/variable at the time and compute the fitness. If the fitness is greather than or
equal to original “reduced” fitness, another attempt to remove other variable will be performed.
The result might be a reduced chromosome with same or better fitness.

Value

A chromosome when result=="highest" or result=="smallest" and a data frame
otherwise.

46 rpart_R_predict

Author(s)

Victor Trevino

See Also

BigBang, geneBackwardElimination.

Examples

Not run:
rchr <- lapply(bb$bestChromosomes[1:100],robustGeneBackwardElimination, bb, result="shortest")
barplot(table(unlist(lapply(rchr,length))),main="Length of Shortened Chromosomes")

End(Not run)

rpart_R_predict Class prediction using the recursive tree partitions method calling the
R code

Description

Recursive tree partition code in R.

Usage

rpart_R_predict(chr, parent, tr, te, result)

Arguments

chr Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

runifInt 47

runifInt Generation of random uniform integer values

Description

random number of uniform distribution

Usage

runifInt(.O, n, mn, mx)

Arguments

.O Gene objct

n Number of random values to generate

mn Minimum value

mx Maximum value

Value

A vector with random values drawn from a uniform distribution.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

runif

svm_C_predict Class prediction using support vector machines method calling the
C/R code

Description

This function really calls the C function that is provided in svm package. The only difference with
svm function is that many checks are removed in order to speed up the process. However, it is
responsability of the user use valid values.

Usage

svm_C_predict(x, parent, tr, te, result, ...)

48 svm_R_predict

Arguments

x Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

... Not used. Included for package compatbility documentation purposes.

Value

Vector of classes (integer) or numeric value. Depends on result argument.

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

svm

svm_R_predict Class prediction using support vector machines method calling the R
code

Description

This function just call svm R code.

Usage

svm_R_predict(x, parent, tr, te, result, ...)

Arguments

x Chromosome. Must be integer, use as.integer().

parent Bigbang object.

tr Sample indexes for training vector. Must be integer, use as.integer().

te Sample indexes for test vector. Must be integer, use as.integer().

result 0 indicates to return class prediction, non-zero returns the proportion of samples
with same class prediction. Must be integer, use as.integer().

... Not used. Included for package compatbility documentation purposes.

Value

Vector of classes (integer) or numeric value. Depends on result argument.

unObject 49

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K.

See Also

svm

unObject Converts variables from class Object (and derived classes) to list

Description

Converts objects derived from class Object to a list object that preserve the properties (data) and can
be accessed using the same R syntax. It is primarly used to explore the data or to save the object as
an R object independent of the original methods.

Usage

unObject(...)

Arguments

... Variables of class Object (or list containing some Object).

Details

In R.oo package, all objects are internally represented as enviroment objects (see R.oo package)
to give the “by value” functionality. However, this representation is not suitable to save, retrive or
explore the data as easy as common objects in R. This method converts an object derived from class
Object to a common list object preserving all data except the original methods. It is very useful
when an object of class Object contains other objects derived from same class Object.

Value

Return a list containg all values of the object. If x contains a list or other Object, these are repre-
sented also as a list.The original class of the object is stored in "Class." value.

Warning

The CPU time consumed by this method depends on the complexity of x. It is commonly very fast
but can be a nuisance when x contains many nested objects of class Object (or many lists containing
Objects).

Note

If properties (values) inside an object Object contains a function object, the enviroment is set to
.GlobalEnv for convenience. This method is also implemented for list object because it could
contain another Object.

Author(s)

Victor Trevino

50 World

See Also

Object, reObject, unObject.list.

Examples

library(R.oo) # needed library
o <- Object()
o$x = 1
o$y = 2
o$x
o$y
o
class(o)
names(o)
uo <- unObject(o)
uo

World The representation of a set of niches with migration for genetic algo-
rithms

Description

Represents a set of nices for the genetic algorithm. Because the niches are “closed populations”,
it is sometimes needed exchange information bewteen niches (or “islands”). The World object
implements the exchange of chromosomes between niches, and to be compatible, it also implements
the needed methods than an usual niche but considering the immigration property. Thus, the Galgo
object can receive a list of Niches, a list of Worlds, or a list of any mixture of them.

Usage

World(id=0,
niches=list(),
immigration=0,
maxFitness=0,
bestFitness=0,
maxChromosome=NULL,
bestChromosome=NULL,
generation=0,
...)

Arguments

id A way to identify the object.

niches A list of defined niches composing the world. However, it can be a list contain-
ing even World objects.

immigration It can be NULL, a function, or a vector. When it is NULL immigration
is disabled. When it is a function it is evaluated using the same World
object as parameter, the result should be a numeric value. When the length of
immigration is greather than 1 a cycled version is used depending on the
generation. If the resulted or selected numeric value is greather than 1 it is

World 51

interpreted as the number of chromosomes to migrate, otherwise it is assumed
to be a probability to migrate one chromosome. The final I best chromosomes
to migrate apply to all niches.

bestFitness The best fitness ever visited.

maxFitness The maximum fitness from the current chromosomes. It should be 0 initially,
but it is included for generalization.

maxChromosome
The chromosome whose fitness is maximum from the current chromosomes. It
should be NULL initially, but it is included for generalization.

bestChromosome
The chromosome whose fitness is maximum visited ever. It should be NULL
initially, but it is included for generalization.

generation For internal use only.

... Other user named values to include in the object (like pMutation, pCrossover or
any other).

Class

Package: galgo
Class World

Object
~~|
~~+--World

Directly known subclasses:

public static class World
extends Object

Fields and Methods

Methods:

best Returns the best chromosome.
bestFitness Returns the fitness of the best chromosome.
clone Clones itself and its niches.
evaluate Evaluate all niches with a fitness function.
generateRandom Generates random values for all niches in the world.
length Gets the number of niches defined in the world.
max Returns the chromosome whose current fitness is maximum.
maxFitness Returns the fitness of the maximum chromosome.
newCollection Generates a list cloning an object.
newRandomCollection Creates a list of cloned object with its internal values generated by random.
plot Plots information about world object.
print Prints the representation of a world object.
progeny Calls progeny method to all niches in the world object.
refreshStats Updates the internal statistics from the current population.

52 World

reInit Erases all internal values in order to re-use the world object.
summary Prints the representation and statistics of the world object.

Methods inherited from Object:
as.list, unObject, $, $<-, [[, [[<-, as.character, attach, clone, detach, equals, extend, finalize, get-
Fields, getInstanciationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save

Author(s)

Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf

References

Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Pub. Co. ISBN: 0201157675

See Also

Gene, Chromosome, Niche, Galgo, BigBang.

Examples

cr <- Chromosome(genes=newCollection(Gene(shape1=1, shape2=100),5))
ni <- Niche(chromosomes=newRandomCollection(cr, 10))
wo <- World(niches=newRandomCollection(ni,2))
wo

progeny(wo) # returns the chromosomes indexes that were mutated

Index

∗Topic classes
Bag, 6
BigBang, 7
Chromosome, 11
Galgo, 24
Gene, 29
Niche, 39
World, 50

∗Topic datasets
ALL, 3
ALL.classes, 4

∗Topic list
Bag, 6

∗Topic methods
as.list.Object, 5
BigBang, 7
Chromosome, 11
classPrediction, 13
configBB.VarSel, 14
configBB.VarSelMisc, 19
fitness, 24
Galgo, 24
galgo.dist, 28
Gene, 29
geneBackwardElimination, 30
generateRandomModels, 32
knn_C_predict, 33
knn_R_predict, 33
loadObject, 34
mlhd_C_predict, 35
mlhd_R_predict, 36
modelSelection, 37
nearcent_C_predict, 37
nearcent_R_predict, 38
Niche, 39
nnet_R_predict, 42
randomforest_R_predict, 43
reObject, 43
robustGeneBackwardElimination,

45
rpart_R_predict, 46
runifInt, 47
svm_C_predict, 47

svm_R_predict, 48
unObject, 49
World, 50

∗Topic package
galgo-package, 2

∗Topic programming
BigBang, 7
Chromosome, 11
Galgo, 24
Gene, 29
Niche, 39
World, 50

*best, 39
*crossover, 39
*evaluate, 2, 24
*progeny, 39

activeChromosomeSet, 10
addCount, 10
addRandomSolutions, 10
ALL, 3
ALL.classes, 4
as.double, 12, 30, 41
as.list (as.list.Object), 5
as.list.Object, 5
as.matrix, 10, 30, 41
assignParallelFile, 10

Bag, 6
best, 27, 41, 51
bestFitness, 27, 41, 51
BigBang, 7, 13, 19, 23, 28, 30–32, 42, 46, 52
blast, 10
buildCount, 10

Chromosome, 11, 11, 28, 30, 42, 52
classPrediction, 13, 24, 37
classPredictionMatrix, 10
clone, 12, 27, 41, 51
computeCount, 10
configBB.VarSel, 11, 14, 14, 24, 28, 37
configBB.VarSelMisc, 11, 19, 28
confusionMatrix, 10
crossover, 41

53

54 INDEX

decode, 12
dist, 28
distanceImportanceNetwork, 10

evaluate, 27, 41, 51
evolve, 27

filterSolution, 10
fitness, 14, 24, 37
fitnessSplits, 10
formatChromosome, 10
forwardSelectionModels, 10
forwardSelectionModels.BigBang,

14, 24, 37

Galgo, 11, 13, 24, 30, 42, 52
galgo (galgo-package), 2
galgo-package, 2
galgo.dist, 28
Gene, 11, 13, 28, 29, 42, 52
geneBackwardElimination, 30, 46
geneCoverage, 10
geneFrequency, 10
geneImportanceNetwork, 10
geneRankStability, 10
generateRandom, 12, 27, 30, 41, 51
generateRandomModels, 32
genes, 12
getFitness, 41
getFrequencies, 10

heatmapModels, 10

knn, 33, 43
knn_C_predict, 33
knn_R_predict, 33

length, 6, 12, 27, 41, 51
list, 7
loadObject, 34
loadParallelFiles, 10

max, 27, 41, 51
maxFitness, 27, 41, 51
meanFitness, 10
meanGeneration, 10
mergeBangs, 10
mlhd_C_predict, 35
mlhd_R_predict, 36
modelSelection, 14, 24, 37
mutate, 13, 30, 41

nearcent_C_predict, 37
nearcent_R_predict, 38

newCollection, 13, 30, 41, 51
newRandomCollection, 13, 30, 41, 51
Niche, 11, 13, 28, 30, 39, 52
nnet, 34, 42
nnet_R_predict, 42

Object, 6, 10, 12, 27, 29, 40, 41, 50, 51
offspring, 41

pcaModels, 10
plot, 10, 27, 41, 51
predict, 10
print, 6, 10, 13, 27, 30, 41, 51
progeny, 41, 51

randomforest_R_predict, 43
refreshStats, 27, 41, 51
reInit, 13, 27, 30, 41, 52
reObject, 35, 43, 50
robustGeneBackwardElimination,

31, 45
rpart_R_predict, 46
runif, 47
runifInt, 30, 47

saveObject, 10
scaling, 41
sensitivityClass, 10
specificityClass, 10
summary, 6, 11, 13, 27, 30, 41, 52
svm, 48, 49
svm_C_predict, 47
svm_R_predict, 48

unObject, 35, 44, 49
unObject.list, 50

World, 11, 13, 28, 30, 39, 42, 50

