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Abstract

Non-regression-based inferences, such as discriminant analysis, can account for the
effect of predictor distributions that may be significant in big data modeling. We describe
bbl, an R package for Boltzmann Bayes learning, which enables a comprehensive super-
vised learning of the association between a large number of discrete factors and multi-level
response variables. Its basic underlying statistical model is a collection of (fully visible)
Boltzmann machines inferred for each distinct response level. The algorithm reduces to
the naive Bayes learner when interaction is ignored. We illustrate example use cases for
various scenarios, ranging from modeling of a relatively small set of factors with het-
erogeneous levels to those with hundreds or more predictors with uniform levels such as
image or genomic data. We show how bbl explicitly quantifies the extra power provided
by interactions via higher predictive performance of the model. In comparison to deep
learning-based methods such as restricted Boltzmann machines, bbl-trained models can
be interpreted directly via their bias and interaction parameters.

Keywords: Supervised learning, Boltzmann machine, naive Bayes, discriminant analysis, R.

1. Introduction

Many supervised learning tasks involve modeling discrete response variables y using predictors
x that can occupy discrete factor levels (Hastie, Tibshirani, and Friedman 2009). Ideally, it
would be best to model the joint distribution P(x,y) via maximum likelihood,

A

0= argénax [ln P(x,y|0©)], (1)

to find parameters ©. Regression-based methods use P(x,y) = P(y|x)P(x) ~ P(y|x). Their
advantages include the wealth of information provided for significance of fit coefficients from
rigorous formal results. An alternative is to use P(x,y) = P(x|y)P(y) and fit P(x|y). Since
y is low-dimensional, this approach could capture extra information not accessible from re-
gression when there are many covarying predictors. To make predictions for y using P(x|y),
one uses the Bayes’ formula. Examples include linear and quadratic discriminant analyses
(Hastie et al. 2009, pp. 106-119) for continuous x. For discrete x, naive Bayes is the simplest
approach, where the covariance among x is ignored via

P(xly) =[] P(aily) (2)
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with x = (21, , Zm).

In this paper, we focus on supervised learners taking into account the high-dimensional nature
of P(x|y) beyond the naive Bayes-level description given by Eq. (2). Namely, a suitable
parametrization is provided by the Boltzmann machine (Ackley, Hinton, and Sejnowski 1985),
which for the simple binary predictor x; = 0, 1,

1
P(xly) = - exp (Z Wi+ J;%xj) , 3)
Y i

1<j

where Z, is the normalization constant, or partition function. Equation (3) is the Gibbs

distribution for Ising-type models in statistical mechanics (Chandler 1987). The two sets

of parameters hz(y) and Ji(jy) each represent single variable and two-point interaction effects,

respectively. When the latter vanishes, the model leads to the naive Bayes classifier. Although
exact inference of Eq. (3) from data is in general not possible, recent developments led to many
accurate and practically usable approximation schemes (Hyvérinen 2006; Morcos, Pagnani,
Lunt, Bertolino, Marks, Sander, Zecchina, Onuchic, Hwa, and Weigt 2011; Nguyen, Zecchina,
and Berg 2017; Nguyen and Wood 2016; Nguyen and Wood 2016), making its use in supervised
learning a viable alternative to regression methods. Two approximation methods available
for use are pseudo-likelihood inference (Besag 1975) and mean field theory (Chandler 1987;
Nguyen et al. 2017).

A recently described package BoltzMM can fit the (‘fully visible’) Boltzmann machine given
by Eq. (3) to data using pseudo-likelihood inference (Jones, Nguyen, and Bagnall 2019b;
Jones, Bagnall, and Nguyen 2019a). In contrast, classifiers based on this class of models
remain largely unexplored. Supervised learners using statistical models of the type (3) usually
take the form of the restricted Boltzmann machines instead (Hinton 2012), where (visible)
predictors are augmented by hidden units and interactions are zero except between visible
and hidden units. The main drawback of such layered Boltzmann machine learners, as is
common in all deep learning algorithms, is th(e )difﬁculty in interpreting trained models. In
y

contrast, with the fully visible architecture, J;;” in Eq. (3), if inferred with sufficient power

while avoiding overfitting, has direct interpretation of interaction between two variables.

We refer to such learning/prediction algorithms using a generalized version of Eq. (3) as
Boltzmann Bayes (BB) inference. An implementation specific to genomic single-nucleotide
polymorphism (SNP) data (two response groups, e.g., case and control, and uniform three-
level predictors, i.e., allele counts of z; = 0,1,2) has been reported previously (Woo, Yu,
Kumar, Gold, and Reifman 2016). However, this C++ software was geared specifically toward
genome-wide association studies and is not suitable for use in more general settings. We
introduce an R package bbl (Boltzmann Bayes Learner), which uses both R and C++ for
usability and performance, allowing the user to train and test statistical models in a variety
of different usage settings.

2. Model and algorithm

For completeness and for reference to software features described in Sec. 3, we summarize
in this section key relevant formulas (Woo et al. 2016) used by bbl, generalized such that
predictors each can have varying number of factor levels.
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1. Model description

The discrete response y; for an instance k takes factor values y among K > 2 groups; e.g.
y = case, control; k= 1,---  n denotes sample index with the total sample size n. We use
symbol y for a particular factor value and generic response variables interchangeably. The
overall likelihood is

LzZlnP(xk,yk) :ZZIHP(xk,y) EZLy, (4)
k Y

Y key

where the second summation is over all k for which y; = y. The inference is first performed
for each group y separately, maximizing L, given by

Ly =3 [ P(xFly) + n P(y)] = 30 P(xFly) + nypy, (5)
key key

where p, = P(y) is the marginal distribution of y and n, is the size of group y.

In parametrizing the first term in Eq. (5), we assume that predictor variables take discrete
factor levels, each with distinct effect on responses, e.g., z; = a, t, g, ¢ for DNA sequence
data. The group-specific predictor distribution can then be written as

P(x|y) = exp Zh(y) (x;) —i—Z x,,x] . (6)

1<J

J (x,2")} is

The number of parameters (d.f.) per group y in O, = {hz( (z), J;;

df. =) (Li— 1)+ (Li — 1)(L; — 1), (7)

7 1<j

where L; is the total number of levels in factor x;, which contributes one less parameters to
d.f. because one of the factors can be taken as reference with the rest measured against it.

Internally, bbl orders factors, assigns codes a; = 0,--- , L; —1, and set hgy)(ai) = Ji(;/)(ai, aj) =
0 whenever a; = 0 or aj = 0. We refer to hgy) (x) and Ji(;/) (x,2') as bias and interaction
parameters, respectively.

In the special case where predictor levels are binary (x; = 0, 1), one may use the spin variables
si = 2x; — 1 = %1, as in the package BoltzMM (Jones et al. 2019b). Its distribution (Jones
et al. 2019a)

1
P(s) < exp <2ST Ms + st> (8)
is then related to Eq. (3) by

J#%
1

My = i) (9b)

where parameter superscripts were omitted because response group is not present.
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2.2. Pseudo-likelihood inference

One option for fitting Eq. (6) to data is pseudo-likelihood maximization (Besag 1975):

Ly —nypy = > I PxFly) ~ > > InPiafly,af,) = Ly, (10)
7

key key 1
where the effective univariate distribution is conditional to all other predictor values:

Pelyapg) = o (1)
(Y, Tin) = ———, 11
7\ Ziy(T4\i)

L;—1
(y ) 7 (¥)
(w) = o) 14 5 el (12)
a=1

and

W (@|r;;) = +3 I (@, ). (13)
J#i

Including Lo penalizers (Ap, A), Lj, in Eq. (10) becomes

Liy = Z {Bgy)(wﬂxf\%) In Zly( T\ ] )\hZh 24 Z J(y) (14)

key j,x,x’

with first derivatives

OLiy/ny A(y) 1 k (v)
—— = [ (x)— E Pi(zly, zp;) — Anhy (2), (15a)
oY (z) ny key
OLiy/n, A(v) W) (.
— = f(za)) - — E 1( x = 2/)Pi(zy, xF ;) — A (x,2"),  (15Db)
0JY (a,a") 7 ny o2 0\ j

where fi(y) () and ﬁg’) (x,2') are the first and second moments of predictor values and 1(x)
is the indicator function. In bbl, Eqgs. (15) are solved in C4++ functions using the quasi-
Newton optimization function gsl_multimin_fdfminimizer_vector_bfgs2 in GNU Scien-
tific Library (https://www.gnu.org/software/gsl). By default, A\;, = 0 and only interaction
parameters are penalized. As can be seen from the third equality of Eq. (10), the pseudo-
likelihood inference decouples into individual predictors, and the inference for each 7 in bbl
is performed sequentially. The resulting interaction parameters, however, do not satisfy the
required symmetry,

Jij(z,2") = Jj(2, x). (16)

After pseudo-likelihood inference, therefore, the interaction parameters are symmetrized as
follows:

Jij(z, ') + % [Jij(z,2") + Jji (2! 2)] . (17)

In bbl, the input data are filtered such that predictors with only one factor level (no variation
in observed data) are removed. Nevertheless, in cross-validation of the processed data, sub-
divisions into training and validation sets may lead to instances where factor levels observed
for a given predictor within z; in Eq. (15) are only a subset of those in the whole data. It is
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thus possible that optimization based on Egs. (15) is ill-defined when any of the predictors
are constant. In such cases, we augment the training data by an extra instance, in which
constant predictors take other factor levels.

2.3. Mean field inference

The other option for predictor distribution inference is mean field approximation. In data-
driven inference, the interaction parameters are approximated as (Nguyen et al. 2017)

JW(z,2") = - [c(y)] (z,), (18)
i.e., negative inverse of the covariance matrix,
€ ) = o) = fiw) (o) (19

Equation (18) can be interpreted as treating discrete x as if it were multivariate normal:
Eq. (6) would then be the counterpart of the multivariate normal p.d.f. with —Ji(J‘y) (x,2")
corresponding to the precision matrix. In real data where n ~ d.f. or less, the matrix inversion
is often ill-behaved. It is regularized by interpolation of C*) between non-interacting (naive
Bayes) (e = 0) and fully interacting limits (e = 1):

Tr C®)

CW  CW =1 —¢ o~

| +eCW), (20)

where | is the identity matrix of the same dimension as C¥). The parameter € serves as a
good handle for probing the relative importance of interaction effects.

The bias parameters are given in mean field by an analog of Eq. (13),

W () = B (2) = 3050 JY F9 ), (21)
Jj#

and

B (@) = [f7 @)/ £ 0)] (22)

where fi(y) (0) is the frequency of (reference) factor x; for which the parameters are zero
(a; = 0). Equation (21) relates the effective bias for predictor z; (the first term on the right)
as the sum of univariate bias (left-hand side) and combined mean effects of interactions with
other variables (the second term on the right) (Chandler 1987). The effective bias is related
to frequency via Eq. (22) because

@) = = [P (23)

where the fact that ﬁgy) (0) = 0 was used in the second equality.

As in pseudo-likelihood maximization, mean field inference also may encounter non-varying

predictors during cross-validation. To apply the same inference scheme using Egs. (19), (21)

and (22) to such cases, the single-variable frequency fz-(y) (z) and covariance f ®) (z,2) are
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computed using data augmented by a prior count of 1 uniformly distributed among all L;
factor levels for each predictor.

2.4. Classification

For prediction, we combine predictor distributions for all response groups via Bayes formula:

Pixlyp, | g
PR = S Pty g — T+ 5y POl by Plglpy 11 B 2D
where
x) = In P(X’y)py
Fy( ) : [Ey@@ P(X|y/)py/‘| ‘ (25)

For binary response coded as y = 0,1, Eq. (25) reduces to
Fi(x) = InP(xly=1)—-InP(xly=0)+In(p1/po)

_ ey () /. Zop1
_ Z[h (2;) — h! ]+§[” zi ) — JS (xl,xj)}—i-lnzlpo. (26)

Therefore, if Ji(]y) (x,2") = 0 (naive Bayes), Eq. (24) takes the form of the logistic regression
formula. However, the actual naive Bayes parameter values differ from logistic regression fit.
No expression for P(y|x) simpler than Eq. (24) exists for data with more than two groups.

In pseudo-likelihood maximization inference, Z, can be approximated by

(y) -
wz, -3 {Z T o ttes ] } | @7

Ykey i

or with the same expression without the factor of 1/2 in the interaction term in the exponent
(default). This quantity can be conveniently computed during the optimization process. With
the mean field option, the following expression is used:

InZ, = —In f®(0 —fZZJZ]a;x filz) f; (). (28)

i#7 x,x!

For a test data set for which the actual group identity y, of data instances are known, the
prediction score (accuracy) may be defined as

= %Z 1 [g(xk) = yk} , (29)
k

where
9(x) = arg max P(y|x). (30)
y

If response is binary, the score defined by Eq. (29) is sensitive to marginal distributions of the
two groups via Eq. (26). The area under curve (AUC) of receiver operating characteristic is
a more robust performance measure independent of probability cutoff. In bbl, the prediction
score given by Eqs. (29) and (30) is used in general with the option to use AUC for binary
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response using R package pROC (Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, and
MAijller 2011).

3. Software Usage and Tests

3.1. Titanic data

We first illustrate BB inference for full multilevel response data sets by bbl using the base R
data Titanic:

R> titanic <- as.data.frame(Titanic)
R> head(titanic)

Class Sex  Age Survived Freq
1 1st Male Child No 0
2 2nd Male Child No 0
3 3rd Male Child No 35
4 Crew Male Child No 0
5 1st Female Child No 0
6 2nd Female Child No 0

The frequency data can be converted into raw data (one observation per row) using the utility
function freq2raw in bbl:

R> library(bbl)

R> titanic <- freq2raw(titanic, Freq='Freq')
R> head(titanic)

Class Sex  Age Survived

1 3rd Male Child No
2 3rd Male Child No
3 3rd Male Child No
4 3rd Male Child No
5 3rd Male Child No
6 3rd Male Child No

R> summary(titanic)

Class Sex Age Survived
1st :325 Male :1731 Child: 109 No :1490
2nd :285 Female: 470 Adult:2092 Yes: 711
3rd :706
Crew:885

We first divide the sample into train and test sets,
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R> set.seed(158)

R> nsample <- nrow(titanic)

R> flag <- rep(TRUE, nsample)

R> flag[sample (nsample, nsample/2)] <- FALSE
R> dtrain <- titanic[flag,]

R> dtest <- titanic[!flag,]

and apply linear regression using glm:
R> fit <- glm(Survived ~ ., family=binomial(), data=dtrain)

R> prl <- predict(fit, newdata=dtest)
R> pROC: :roc(response=dtest$Survived, predictor=prl, direction='<')$auc

Area under the curve: 0.7615

The BB inference in bbl uses objects of S4 class bbl instantiated by input training data:

R> model <- bbl(data=dtrain, y='Survived')
R> model

An object of class bbl

3 predictor states:
Class = 1st 2nd 3rd Crew
Sex = Female Male
Age = Adult Child

Responses:
Survived = No Yes

Sample size: 1101

The argument y specifies the column name of the response variable.

We first try a single pseudo-likelihood inference by

R> model <- train(model, method='pseudo', lambda=0)

Inference for class "Survived" = No:
Maximum pseudo-likelihood = -1.457337

Inference for class "Survived" = Yes:
Maximum pseudo-likelihood = -1.894484

R> model@h

[[1]1]
[[1110[11]

2nd 3rd Crew
1.6062299 3.3293218 -0.6986764



C([111C[2]1]
Male
3.294906

(0111 [[3]]
Child
-9.061989

[[2]]
[[211[[1]1]
2nd

3rd
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Crew

-0.6471455 -0.6117188 -1.8110162

(021100211
Male
-0.9233562

(211 C[3]]
Child
-3.667611

R> head(model@J,n=1)

[[1]1]
(111 C001]]
(0111001110010

2nd 3rd Crew

2nd 0 0
3rd 0 0
Crew 0 0

C[11100111C02]1]

Male
2nd -1.265668
3rd -2.001114
Crew 2.501538

[[111 0011100311

Child
2nd -2.563383
3rd  8.047997
Crew -3.758009

[C1110[2]1]
(11100211 001]]
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2nd 3rd Crew
Male -1.265668 -2.001114 2.501538

[[111 02111211
Male
Male 0

[[111 00211 C[3]1]
Child
Male -0.7464861

[[1110[3]1]
C([111 00311 C01]]

2nd 3rd Crew
Child -2.563383 8.047997 -3.758009

([111[03]1]C[2]]
Male
Child -0.7464861

[[111C0311L[3]]
Child
Child 0

The function train here solves the maximum pseudo-likelihood equations (15) using training
()

data and stores the inferred parameters h;”’ and Ji(]y) as lists with argument order (y,17)
and (y,1,7), respectively. The inner-most elements of the lists are vectors and matrices of
dimension L; —1=c¢(3,1,1) and (L; — 1, L; — 1), respectively.

We predict the survival probability of test individuals using the trained model:

R> pr <- predict(model, newdata=dtest, logit=FALSE)
predicting group probabilities...

R> head(pr)

No Yes
1 0.8310902 0.1689098
2 0.8310902 0.1689098
3 0.8310902 0.1689098
4 0.8310902 0.1689098
5 0.8310902 0.1689098
6 0.8310902 0.1689098

R> pROC: :roc(response=dtest$Survived, predictor=pr[,2], direction='<')$auc
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Area under the curve: 0.7649

Here, Eq. (24) was used with x from the supplied newdata. The newdata can either contain
the response column as in the above example (the program will disregard it), or only the
predictor columns. The predictor columns must either have the same order as in the training
data or be labeled with column names.

One can do cross-validation applied to dtrain data, dividing it into nfold = 5 train/validation
subsets of 4:1 proportion, and aggregating predictions for validation sets using the trained
model:

R> cv <- crossval (model, method='pseudo', lambda=10"seq(-6,-2,0.5),
+ verbose=0)

R> cv

lambda auc
1 1.000000e-06 0.6534036
2 3.162278e-06 0.6645917
3 1.000000e-05 0.6737016
4 3.162278e-05 0.6885623
5 1.000000e-04 0.6899207
6 3.162278e-04 0.6960352
7 1.000000e-03 0.7005476
8 3.162278e-03 0.7047930
9 1.000000e-02 0.6710430

It returns a data.frame of AUCs for multiple lambda values. There is a maximum AUC at
A =1 x 1073. We use this information to make prediction:

R> lstar <- cv([cv$auc==max(cv$auc),]$lambda
R> model <- train(model, method='pseudo', lambda=lstar)

Inference for class "Survived" = No:
Maximum pseudo-likelihood = -1.502807

Inference for class "Survived" = Yes:
Maximum pseudo-likelihood = -1.955395

R> pr2 <- predict(model, newdata=dtest, progress.bar=FALSE)
predicting group probabilities...

R> yhat2 <- model@groups[apply(pr2,1,which.max)]
R> mean(dtest$Survived==yhat2)

[1] 0.7836364

R> pROC: :roc(response=dtest$Survived, predictor=pr2[,2], direction='<')$auc
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Area under the curve: 0.7728

3.2. Simulated data

We next demonstrate the reliability of bbl inference using simulated data.

R> predictors <- list()

R>m <-5

R>L <- 3

R> for(i in 1:m) predictors[[i]] <- seq(0, L-1)

R> par <- randompar(predictors, dh=1, dJ=1, distr='unif')
R> names (par)

[1] nhn "J“

The utility function randompar generates random parameters for predictors. We have set the
total number of predictors as m = 5, each taking values 0,1,2 (L; = L = 3).

R> xi <- sample_xi(nsample=10000, predictors=predictors, h=par$h, J=par$J,
+ code_out=TRUE)
R> head(xi)

o O W
N ONOO O -
= N =N O NN
ONNEFENO W
B NP, ON O B
ON P, P, N PP, O

The function sample_xi will list all possible predictor states and sample configurations based
on the distribution (6). The total number of states here is L™ = 3°, which is amenable for
exhaustive enumeration. However, this is possible only for small m and L. If either are even
moderately larger, sample_xi will hang.

Because there is only one response group, we call the main engine mlestimate of bbl inference
directly instead of train:

R> fit <- mlestimate(xi=xi, method='pseudo',lambda=0)

Predictor 1: 46 iterations, likelihood = 1.02771
Predictor 2: 47 iterations, likelihood = 0.83911
Predictor 3: 44 iterations, likelihood = 0.702856
Predictor 4: 42 iterations, likelihood = 0.977994
Predictor 5: 39 iterations, likelihood = 1.00459

R> names(fit)
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Figure 1: Comparison of true parameters and those inferred from pseudo-likelihood BB inference.
See the text for conditions.

[1] nhn an ||m1en nlzu

In contrast to train, which is designed for use with bbl object with multiple response groups
and predictors in factors, mlestimate is for a single group and requires input matrix xi whose
elements are integral codes of factors: a; =0, -+, L; — 1.

Figure 1 compares the true and inferred parameters. Here, the sample size was large enough
that no regularization was necessary.

We next simulate a full binary response data set with four-level predictors:

R> set.seed(135)

R> n <- 1000

R> for(i in 1:m) predictors[[i]] <- c('a','c','g','t")
R> par <- xi <- 1list()

R> for(iy in 1:2){

+ par[[iy]l] <- randompar(predictors, h0=0.1*(iy-1), J0=0.1*(iy-1),

+ distr='unif')

+ xi[[iy]] <- sample_xi(nsample=n, predictors=predictors, h=par[[iy]]$h,
+ J=par[[iy]1$J)

+ F

13
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R> dat <- cbind(rbind(xi[[1]],xi[[2]]), data.frame(y=c(rep('control’',n),
+ rep('case',n))))
R> model <- bbl(data=dat, groups=c('control', 'case'))

R> model

An object of class bbl
5 predictor states:

l=acgt

2=acgt

3=acgt
Responses:

y = control case
Sample size: 2000

The explicit groups argument to bbl overrides the default detection and ordering of response
groups from data. We now cross-validate using mean field inference,

R> cv <- crossval (model, method='mf', eps=seq(0,1,0.1),verbose=0)
R> head(cv)

epsilon auc
1 0.0 0.802728
2 0.1 0.846345
3 0.2 0.861013
4 0.3 0.866632
5 0.4 0.869644
6 0.5 0.871085
Here, train is called inside crossval as before but with method = ’mf’, which triggers mean

field inference with Eqs. (18) and (21).

As shown in Fig. 2a, prediction AUC is optimized near e = 0.8. The difference between AUC
at € = 0 (naive Bayes limit) and the maximum is a measure of the overall effect of interaction.
We select three values of ¢ and examine the fit:

R> fit <- list()

R> eps <- ¢(0.2, 0.8, 1.0)

R> for(i in seq_along(eps))

+ fit[[i]] <- train(model, method='mf', eps=eps[i], verbose=0)

Figure 2b-d compares the three inferred parameter sets (fit[[i]]@h, fit[[i]]@J) with the
true values (par[[iy]]1$h, par[[iy]]1$J). As € increases from 0 to 1, interaction parameter
J grows from zero to large, usually overfit levels. We verify that the bias and variance strike
the best balance under € = 0.8 (Fig. 2¢), as suggested by cross-validation AUC in Fig. 2a.

3.3. Image data
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Figure 2: Regularized mean field inference using simulated data. (a) Cross-validation AUC with
respect to regularization parameter e. (b-d) Comparison of true and inferred parameters under three
€ values. Best fit is achieved when AUC is maximum.

Advantages of bbl over regression become more apparent when dealing with large data sets
and predictors numbering ~ 100 or more. Here, we consider the MNIST data set (yann.
lecun.com/exdb/mnist/) widely used for benchmarking classification algorithms (Lecun,
Bottou, Bengio, and Haffner 1998). Each sample in this data set contains grayscale levels
(z; = [0,255]) derived from an image of hand-written digits (yx = 0,---,9) for m = 28 x 28 =
784 pixels. We use down-sampled training (n = 1,000) and test(n = 500) data sets, where
grayscale has been transformed into binary predictors (z; = 0,1):

R> dat <- read.csv(system.file('extdata/mnist_train.csv',package='bbl'))
R> dat[1:5,1:10]

X

[y

X2 X3 X

>3
©

g s WwN -

= 00~ N OY
O O O O O

O O O O ON
O O O O O Ww
O O O O O
O O O O O OU
O O OO OO,
O O O O O N
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R> mnist <- bbl(data=dat)
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Figure 3: Cross-validation of BB inference on MNIST data using mean field option. Sample sizes are

for down-sampled example and full data sets, respectively.

R> mnist

An object of class bbl
584 predictor states:

X40 = 0 1
X41 =01
X45 =0 1
Responses:

y=012345672829
Sample size: 1000

Note that when the object is created, the predictors without factor variations (pixels that are
always empty) are dropped from data.

R> cv <- crossval (mnist, method='mf', eps=0.1)



Jun Woo, Jinhua Wang 17

Algorithm Method Error rate (%) Reference/package

Linear classifier 1-layer NN 12.0 Lecun et al. (1998)

K-nearest neighbors Euclidean (L2) 5.0 Lecun et al. (1998)

2-layer NN 300 hidden units 4.7 Lecun et al. (1998)

RBM 2-layer 0.95 Salakhutdinov and Hinton (2009)
Naive Bayes Mean field (e = 0) 16.2 bbl

BB Mean field (e = 0.05) 6.8 bbl

Table 1:  Performance comparison of BB inference and other models on MNIST data set. BB,
Boltzmann Bayes; NN, neural network; RBM, restricted Boltzmann machine.

The above run will take a few minutes. By feeding a vector of € values, one can obtain the
profile shown in Fig. 3 (white symbols). The substantial jump in performance under €* ~ 0.1
over ¢ — 0 (naive Bayes) limit gives a measure of interaction effects. The relatively small
value of €* at the optimal condition, compared to e.g., Fig. 2a, reflects the sparseness of image
data.

We now retrain the model without cross-validation under ¢* and classify test set (also down-
sampled to n = 500) images:

R> mnist <- train(mnist, method='mf', eps=0.1)

R> dtest <- read.csv(system.file('extdata/mnist_test.csv',package='bbl'))
R> dtest <- dtest[,colnames(dtest) J,inj, colnames (mnist@data)]

R> pr <- predict(mnist, newdata=dtest[,-1], progress.bar=FALSE)

R> yhat <- colnames(pr) [apply(pr, 1, which.max)]

R> mean(yhat==dtest$y)

Since mnist dropped a subset of original predictors, the test data must be filtered accordingly.
Note the increase in test score compared to cross-validation score because of the use of full
training data. Set progress.bar = TRUE to monitor the progress in a slow predict run.

We performed similar cross-validation and test analyses of the full MNIST data (training
n = 60,000 and test n = 10,000; Fig. 3, red symbols) and obtained the test score of 0.932
(classification error rate 6.8%), which compares favorably with some of the best-performing
large-scale neural network algorithms (Lecun et al. 1998; Salakhutdinov and Hinton 2009)
(Table. 1).

3.4. Transcription factor binding site data

One of machine learning tasks of considerable interest in biomedical applications is the
detection of transcription factor binding sites within genomic sequences (Wasserman and
Sandelin 2004). Transcription factors are proteins that bind to specific DNA sequence seg-
ments and regulate gene expression programs. Public databases, such as JASPAR (Khan,
Fornes, Stigliani, Gheorghe, Castro-Mondragon, van der Lee, Bessy, Chéneby, Kulkarni, Tan,
Baranasic, Arenillas, Sandelin, Vandepoele, Lenhard, Ballester, Wasserman, Parcy, and Math-
elier 2018), host known transcription factors and their binding sequence motifs. Supervised
learners allow users to leverage these data sets and search for binding motifs from candidate
sequences.
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Here, we illustrate such an inference using an example set (MA0014.3) of binding motif
sequences from JASPAR (http://jaspar.genereg.net):

R> seq <- read.fasta(system.file('extdata/MA0O014.3.fasta',package='bbl'))
R> head(seq)

123456789 10 11 12
16GGCGTGAC T T C
2CAGCGTGAC G C G
3GCGCGTCAC G C T
4 CAGCTTGAC C A G
5GACCGTGAC C A C
6AGGCGCGAC G C C

R> dim(seq)
[1] 948 12

The data set consists of common nucleotide segments from n = 948 raw sequences used for
motif discovery. The function read.fasta will read a FASTA format file and turn it into a
data frame. We simulate a training set by generating non-binding sequences with random
mutation of 3 nucleotides:

R> set.seed(561)

R> nsample <- NROW(seq)

R> m <- NCOL(seq)

R> nt <- c('A','C','G','T")

R> ctrl <- as.matrix(seq)

R> for(k in seq(nsample))

+ ctrl[k, sample(m,3)] <- sample(nt, 3, replace=TRUE)

R> colnames(ctrl) <- 1:m

R> data <- rbind(data.frame(y=rep('Binding', nsample), seq),
+ data.frame (y=rep('Non-binding', nsample), ctrl))
R> data <- data[sample (NROW(data)), ]

We assess the performance of pseudo-likelihood and mean field inferences below using cross-
validation:

R> model <- bbl(data=data)
R> model

An object of class bbl
12 predictor states:
X1=ACGT
X2=ACGT
X3=ACGT
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Responses:
y = Binding Non-binding
Sample size: 1896

R> ps <- crossval (model, method='pseudo', lambda=10"seq(-1,-2,-0.2), verbose=
R> ps

lambda auc
1 0.10000000 0.8517130
2 0.06309573 0.8533535
3 0.03981072 0.8544531
4 0.02511886 0.8547420
5 0.01584893 0.8536301
6 0.01000000 0.8508037

R> mf <- crossval(model, method='mf', eps=seq(0.1,0.4,0.1),verbose=0)
R> mf

epsilon auc
0.1 0.8539235
0.2 0.8548070
0.3 0.8537745
0.4 0.8518373

W N -

In both cases, there is an optimal, intermediate range of regularization with maximum AUC
(Fig. 4). The level of performance attainable with non-interacting models, such as position
frequency matrix (Wasserman and Sandelin 2004), corresponds to the e = 0 limit in Fig. 4b.
The AUC range obtained above is representative of the sensitivity and specificity levels one
would get when scanning a genomic segment using a trained model for detection of a binding
site to within the resolution of ~ 3 base pairs.

We analyzed 856 data sets from JASPAR database of varying sample sizes and segment
lengths with the same protocol. Differences between fully optimized AUC scores and those
from non-interacting models (naive Bayes) were most pronounced above the intermediate
range of AUC, and were independent of segment lengths (Fig. 5a). Pseudo-likelihood results
had better scores compared to mean field on avarge (Fig. 5b).

4. Summary

We introduced a user-friendly R package bbl, implementing general BB classifiers applicable
to heterogeneous, multifactorial predictor data associated with a discrete multi-class response
variable. The currently available R package BoltzMM is limited to fitting data into a single
fully visible Boltzmann distribution without reference to response variables, and assumes
binary predictors. The package bbl extends the basic statistical distribution to accommodate
heterogeneous, factor-valued predictors via Eq. (6), embedding it in a Bayesian classifier for
supervised learning and prediction.
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Figure 4: Cross-validation of discrete BB model on transcription factor binding motif data with
control sequences generated by 3 nucleotide mutations. Data set is from Khan et al. (2018) (sample
ID MAOQ014.3; see text). (a) Pseudo-likelihood and (b) mean field inferences.
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Figure 5: AUC scores of bbl model trained on 856 transcription factor binding site sequence data
sets from JASPAR (Khan et al. 2018) under the same protocol as in Fig. 4. (a) Comparison of naive
Bayes (NB; mean field with € = 0) and full mean field (MF) results. (b) Comparison of mean field
(MF) and pseudo-likelihood maximization (pseudo-L) scores. The symbol colors show the segment
length of each binding site data (color-map in a).

Compared to more widely applied restricted Boltzmann machine algorithms (Hinton 2012),
the BB model explicitly infers interaction parameters for all pairs of predictors, making it pos-
sible to interpret trained models directly. Tests on MNIST suggest performances comparable
to other deep layer neural network models in classification tests. It is especially suited to data
types where a moderate number of unordered features (such as nucleotide sequences) combine
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to determine class identity, as in transcription factor binding motifs (Sec. 3.4). Among the two
options for inference methods, mean field (method = ‘mf’) is faster but can become mem-
ory intensive for models with a large number of predictors. Pseudo-likelihood maximization
(method = ’pseudo’) is slower but generally performs better.

Computational details

Installation of bbl requires the GNU Scientific library https://www.gnu.org/software/gsl
installed. The results in this paper were obtained using R 3.6.0. R itself and all packages
used are available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/.
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