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1 Multi-state survival curves

Consider the three simple models in figure 1. Each box is a patient state and each arrow a
possible transition. The top left figure is simple survival: all patients start in the alive state and
can make a single transition to death. The top right depicts classic competing risks: all subjects
start on the left, and each can make a single transition to one of 3 terminal states. The bottom
figure shows a simple multi-state situation known as the illness-death model.

Traditionally the first case is handled by the Kaplan-Meier esimate and the second by the
“cumulative incidence”, the third case requires use of the the Aalen-Johansen estimate, which
includes each of the first two as a special case. The AJ estimate is very flexible: subjects can
appear in more than one state during the course of a study, subjects can start after time 0
(delayed entry), and they can start in any of the states. The survfit function implements the
AJ estimate and can handle all these cases.

Let A(t) be a matrix of cumulative hazard functions, whose ij element is the estimated
cumulative hazard for transitions from state i to state j.

Aij(t) =

∫ t

0

dNij(t)/ri(t)

where dN counts the transitions and r is the number of subjects still at risk in a state. The
diagonal elements of A are filled in last such that row sums of A are equal to zero. Then the
Aalen-Johansen transition matrix is

P (t) =
∏
s≤t

[I + dA(s)] (1)

The product is over all time points s ≤ t at which a transition occured, and dA is the change
in the A matrix at that time point. For the two state model it is fairly easy to show that this
reduces to the Kaplan-Meier.

The ith row of P (t) estimates the fraction of subjects in each state at time t, given that
subjects started in state i. The solution obeys the obvious constraint that the row sums at any
time are equal to 1: each person has to be somewhere. I will refer to the resulting values as
prevalence estimates. If there is no censoring then prevalence is particularly easy: at a given
time just count the fraction of subjects in each state.
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Figure 1: Three multi-state models. In the upper left is simple survival, in the upper right an
example of competing risks, with the multi-state illness-death model below them.

2



In the simple two state model the prevalence in the alive state is the usual KM survival
estimate, and we have P(alive) = 1 - P(dead). For simple survival we have gotten used to the
idea of using P(dead) and 1- P(dead) interchangeably, but that habit needs to be left behind for
multi-state models, for them the values 1−Pk = probability(any other state than k) are not very
useful. Plots for the 2 state case sometimes choose to show P(alive) and sometimes P(dead).
Which one is used often depends on a historical whim of the disease specialty; cardiology journals
for instance quite often use P(event) resulting in curves that rise starting from zero, but oncology
journals invariably use P(alive) giving curves that fall downhill from 1. The survfit routine’s
historical default for the 2 state case is to print and plot P(alive), which reflects that the author
of the routine was working primarily in cancer trials at the time said default was chosen. In
the multi-state case, however, the curve for the initial state (leftmost in my diagrams) is rarely
included in the final plot and curves start at 0.

Here is an example using a simple competing risks problem. The mgus2 data set contains the
time to plasma cell malignancy (PCM) and/or death for 1384 subjects diagnosed with monoclonal
gammopathy of undetermined significance (MGUS). Survival and progression time are in months.
The curve below shows ordinary Kaplan-Meier survival for these subjects, the mean age at
diagnosis is just over 70 years.

> oldpar <- par(mfrow=c(1,2))

> hist(mgus2$age, nclass=30, main='', xlab="Age")

> with(mgus2, tapply(age, sex, mean))

F M

71.32171 69.67065

> mfit1 <- survfit(Surv(futime, death) ~ sex, data=mgus2)

> mfit1

Call: survfit(formula = Surv(futime, death) ~ sex, data = mgus2)

records n.max n.start events median 0.95LCL 0.95UCL

sex=F 631 631 631 423 108 100 121

sex=M 753 753 753 540 88 79 97

> plot(mfit1, col=c(1,2), xscale=12, mark.time=FALSE, lwd=2,

xlab="Years post diagnosis", ylab="Survival")

> legend(6, .8, c("female", "male"), col=1:2, lwd=2, bty='n')

> par(oldpar)
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A second model for these subjects is competing risks, which corresponds to our second figure
above. For this model we are only interested in the first event for each subject. Formally we
are treating progression to a plasma cell malignancy (PCM) as an absorbing state, i.e., one that
subjects never exit. We create a variable etime containing the time of the first progression,
death, or last follow-up along with an event variable that contains the outcome.

> etime <- with(mgus2, ifelse(pstat==0, futime, ptime))

> event <- with(mgus2, ifelse(pstat==0, 2*death, 1))

> event <- factor(event, 0:2, labels=c("censor", "pcm", "death"))

> table(event)

event

censor pcm death

409 115 860

> mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2)

> mfit2

Call: survfit(formula = Surv(etime, event) ~ sex, data = mgus2)

records n.max n.start events median 0.95LCL

pcm, sex=F 631 631 631 429 NA NA

death, sex=F 631 631 631 429 125 140

pcm, sex=M 753 753 753 546 NA NA

death, sex=M 753 753 753 546 97 106
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0.95UCL

pcm, sex=F NA

death, sex=F 114

pcm, sex=M NA

death, sex=M 84

> plot(mfit2, col=c(1,1,2,2), lty=c(2,1,2,1),

xscale=12, mark.time=FALSE, lwd=2,

xlab="Years post diagnosis", ylab="Prevalence")

> legend(20, .6, c("death:female", "death:male", "pcm:female", "pcm:male"),

col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')
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The mfit2 call is nearly identical to that for an ordinary Kaplan-Meier, with the exception
of the event variable.

1. The event variable was created as a factor ; whereas for ordinary single state survival the
status is either 0/1 or TRUE/FALSE. The first level of the factor must be censoring,
which is the status code for those whose follow-up terminated without reaching either
endpoint. Codes for the remaining states can be in any order. The labels for the states
are unrestricted.

2. A simple print of the mfit1 object shows the order in which the curves will be displayed.
This information was used to choose the line types and colors for the curves.

3. Since these are prevalence estimates, the curves start at 0.
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A common mistake with competing risks is to use the Kaplan-Meier separately on each event
type while treating other event types as censored. The next plot is an example of this for the
PCM endpoint.

> pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2)

> plot(pcmbad[2], mark.time=FALSE, lwd=2, fun="event", conf=FALSE, xscale=12,

xlab="Years post diagnosis", ylab="Fraction with PCM")

> lines(mfit2[2,1], lty=2, lwd=2, mark.time=FALSE, conf=FALSE, xscale=12)

> legend(0, .28, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"),

col=1, lwd=2, lty=c(1,2), bty='n')

0 5 10 15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Years post diagnosis

F
ra

ct
io

n 
w

ith
 P

C
M

Males, PCM, incorrect curve
Males, PCM, competing risk

There are two problems with the pcmbad fit. The first is that it attempts to estimate the expected
rate of plasma cell malignancy if all other causes of death were disallowed. In this hypothetical
world it is indeed true that many more subjects would progress to PCM, but it is not a world
that any of us will ever inhabit and so is of questionable interest. The second problem is that
the computation for this hypothetical case is only correct if all of the competing endpoints are
independent, a situation which is almost never true. The competing risks curve estimates the
fraction of MGUS subjects who will actually experience PCM, sometimes known as the lifetime
risk.

The above code chose to plot only a subset of the curves, something that is often desirable
in competing risks problems to avoid a “tangle of yarn” plot that simply has too many elements.
This is done by subscripting the survfit object. For subscripting, multistate curves appear as a
matrix with the outcomes as the second subscript. They are in order of the levels of event, i.e.,
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as displayed by our earlier call to table(event). The first subscript indexes the groups formed
by the right hand side of the model formula, and will be in the same order as simple survival
curves. Thus mfit[2,1] corresponds to males and the pcm endpoint.

A third example using the MGUS data treats it as a multi-state model. In this version a
subject can have multiple transitions and thus multiple rows in the data set, and it is necessary
to identify which data rows go with which subject via the id argument of survfit (valid valid
estimates standard errors both depend on this). Our model looks like the illness-death model of
figure 1 but with “plasma cell malignancy” as the upper state and no arrow for a return from
that state to health. The necessary data set will have two rows for any subject who has further
follow-up after a PCM and one row for all others. The data set is created below using the tmerge
function, which is discussed in detail in another vignette.

We need to decide what to do with the 9 subjects who have PCM and death declared at the
same time. They slipped through without comment in the earlier competing risks analysis, only
when setting up this data set did I notice the ties. Looking back at the code, the prior example
counted these subjects as a progression. In retrospect this is defensible: even though undetected
before autopsy, the disease must have been present for some amount of time previous and so
progression did occur first. For the multi-state model we need to be explicit in how this is coded
since a sojourn time of 0 within a state is not allowed. Below we push the progression time back
by .1 month when there is a tie, but that amount is entirely arbitrary.

> ptemp <- with(mgus2, ifelse(ptime==futime & pstat==1, ptime-.1, ptime))

> newdata <- tmerge(mgus2, mgus2, id=id, death=event(futime, death))

> newdata <- tmerge(newdata, mgus2, id, pcm = event(ptemp, pstat))

> newdata <- tmerge(newdata, newdata, id, enum=cumtdc(tstart))

> with(newdata, table(death, pcm))

pcm

death 0 1

0 421 115

1 963 0

The table above shows that there are no observations in newdata that have both a pcm and
death, i.e., the ties have been resolved. The last tmerge line above creates a variable enum which
simply counts rows for each person; it will be used later.

> temp <- with(newdata, ifelse(death==1, 2, pcm))

> newdata$event <- factor(temp, 0:2, labels=c("censor", "pcm", "death"))

> mfit3 <- survfit(Surv(tstart, tstop, event) ~ sex, data=newdata, id=id)

> plot(mfit3[,1], mark.time=FALSE, col=1:2, lty=1, lwd=2,

xscale=12,

xlab="Years post MGUS diagnosis", ylab="Prevalence of PCM")

> legend(4, .04, c("female", "male"), lty=1, col=1:2, lwd=2, bty='n')
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This plot is quite different in that it shows the fraction of subjects are currently in the PCM
state. Looking at the lower scenario in figure 1, this is the fraction of subjects in the upper right
box. The curve goes up whenever someone enters the box and down when they leave. Myeloma
survival was quite short during the era of this study and the proportion in the PCM state rarely
rises above 2 percent. I have often found the three curve display below useful in these cases. It
combines the results from competing risk model used above along with a second fit that treats
death after PCM as a separate state from death before progression. Only males are shown in
the plot to minimize overlap.

> d2 <- with(newdata, ifelse(enum==2, 4, as.numeric(event)))

> e2 <- factor(d2, labels=c("censor", "pcm", "death w/o pcm",

"death after pcm"))

> mfit4 <- survfit(Surv(tstart, tstop, e2) ~ sex, data=newdata, id=id)

> plot(mfit2[2,], lty=c(2,1),

xscale=12, mark.time=FALSE, lwd=2,

xlab="Years post diagnosis", ylab="Prevalence")

> lines(mfit4[2,3], mark.time=FALSE, xscale=12, col=2, lty=2, lwd=2,

conf=FALSE)

> legend(15, .5, c("male:death w/o pcm", "male: ever pcm",

"male: death after pcm"), col=c(1,1,2), lty=c(1,2,2),

lwd=2, bty='n')
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When using multi-state data to create Aalen-Johansen curves individuals are not allowed to
have gaps in the middle of their time line. For example someone who is known to be in state 1
at time s and in state 3 at time t > s, but the exact time they entered state 3 is unknown, nor
whether they visited other states during the interim. Such data requires further assumptions
about the transition process in order to model the outcomes, see for instance the msm package.

2 Models

For simple two-state survival the Cox model leads to three relationships

λ(t) = λ0(t)eXβ (2)

log(Λ(t)) = log(Λ0(t))eXβ (3)

S(t) = exp(−Λ(t)) (4)

where λ, Λ and S are the hazard, cumulative hazard and survival functions, respectively. There
is a single linear predictor which governs both for the rate λ (the arrow in figure 1) and the
prevalence value of the left hand box S. For multi-state models this simplicity no longer holds:
proportional hazards does not lead to proportional prevalence curves.
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2.1 Competing risks, Cox model

The Cox model approach starts by fitting models to each of the transitions. We will illustrate
using the MGUS example.

> mtemp <- mgus2

> mtemp$age <- mtemp$age/10 #age in decades (easier coefficients)

> mtemp$etime <- etime

> mtemp$event <- event

> options(show.signif.stars = FALSE) # display intelligence

> cfit2 <- coxph(Surv(futime, death) ~ age + sex + mspike, data=mtemp)

> cfit2

Call:

coxph(formula = Surv(futime, death) ~ age + sex + mspike, data = mtemp)

coef exp(coef) se(coef) z p

age 0.6221 1.86 0.0343 18.15 0e+00

sexM 0.3536 1.42 0.0659 5.37 8e-08

mspike 0.0311 1.03 0.0598 0.52 6e-01

Likelihood ratio test=393 on 3 df, p=0 n= 1373, number of events= 957

(11 observations deleted due to missingness)

The effect of age and sex on non-PCM mortality is profound, which is not a surprise given the
median starting age of 72. Risk rises 1.9 fold per decade of age and males have 1.4 times as
great a hazard as females. The size of the serum monoclonal spike is of no consequence for this
endpoint either statistically or clinically.

> cfit1 <- coxph(Surv(ptime, pstat) ~ age + sex + mspike, mtemp)

> cfit1

Call:

coxph(formula = Surv(ptime, pstat) ~ age + sex + mspike, data = mtemp)

coef exp(coef) se(coef) z p

age 0.16352 1.178 0.0837 1.9527 5.1e-02

sexM -0.00503 0.995 0.1884 -0.0267 9.8e-01

mspike 0.88408 2.421 0.1652 5.3512 8.7e-08

Likelihood ratio test=30.3 on 3 df, p=1.22e-06 n= 1373, number of events= 115

(11 observations deleted due to missingness)

> quantile(mgus2$mspike, na.rm=TRUE)

0% 25% 50% 75% 100%

0.0 0.6 1.2 1.5 3.0

The mspike size has a major impact on progression, however; each 1 gram change increases
risk by 2.4 fold. The interquartile range of mspike is 0.9 gram so this risk increase is clinically
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important. Meantime the effect of age on the progression rate is much less pronounced, with a
coefficient only 1/4 that for mortality, while the effect of sex on progression is negligible.

Notice that we did not do anything special to the data set or event codes for the Cox model.
The focus of coxph is on the event rates, for which the correct denominator is the set of all
subjects still at risk. This is exactly what is encoded by the (futime, death) and (ptime, pstat)
pairs.

The effect of sex on the lifetime probability of PCM is not zero, however. Because of a longer
lifetime, an average female with MGUS will spend more total years at risk for PCM than the
average male, and so has a larger lifetime risk of PCM. The average rate of progression is about
1% per year, as shown below, while the average post diagnosis lifetime is 18 months longer for
females.

> pfit1 <- pyears(Surv(ptime, pstat) ~ sex, mtemp, scale=12)

> round(100* pfit1$event/pfit1$pyears, 1) # PCM rate per year

F M

1.1 1.0

> temp <- summary(mfit1, rmean="common") #print the mean survival time

> round(temp$table[,1:6], 1)

records n.max n.start events *rmean *se(rmean)

sex=F 631 631 631 423 142.4 6.1

sex=M 753 753 753 540 123.7 5.4

Prevalence estimates from the multi-state model involve the matrix A(t;x) of cumulative
hazard estimates. The i, j off diagonal element of A(t;x) is the the cumulative hazard Λij(t;x)
for the i→ j transition, obtained from the fitted Cox model for that transition. These predicted
hazards are formed for a chosen set of covariates x, e.g. in the model above we could for instance
choose predicted transitions for a 72 year old male with an mspike value of 1.1. Predicted curves
from a Cox model are always with respect to a particular hypothetical subject. The notion of a
baseline hazard, i.e. the hazard for a subject with all covariates equal to zero, is sometimes of
mathematical convenience but only rarely corresponds to any patient of interest. The diagonal
elements of A are filled in last and are chosen such that row sums of are 0.

The obvious analog to the univariate survival curve in equation (4) is the matrix exponential.

P (t;x) = eA(t;x)

However, this computational approach is valid only if the A matrix is separable, i.e., A(t;x) =
A(x)g(t), something that holds true if there are no time dependent covariates in the model and if
all the transitions share the same baseline hazard: a very unusual case. The matrix exponential
formulation is fundamental to multi-state models with constant hazard however, see for instance
the vignette for the msm package. For the Cox model we use the Aalen-Johansen estimator —
the same approach used by survfit for non-parametric estimates.

P (t;x) =
∏
s≤t

(I + dA(s;x)) (5)

where the term dA is the increment in A at time s, and there is an increment at each event
time. As with survival curves from an ordinary Cox model, any such curve is computed for a
prespecified set of covariate values x which must be chosen by the user.
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For illustration we will compute the probabilities of PCM from the model for males and
females under 4 cases: age of 60 vs 80 and a serum mspike of 0.5 vs 1.5; these last are the
approximately the quartiles of age and mspike. Each of surv1 and surv2 below will contain 8
curves, for the 8 combinations of sex, age and mspike.

> tdata <- expand.grid(mspike=c(.5, 1.5), age=c(6,8), sex=c("F", "M"))

> surv1 <- survfit(cfit1, newdata=tdata) # time to progression curves

> surv2 <- survfit(cfit2, newdata=tdata) # time to death curves

The individual survival curves are not actually of interest, since each is a Cox model analog of
the ‘pcmbad’ curve we criticised earlier. Instead, the cumulative hazard portion of the results are
used to build an Aalen-Johansen estimate. The A matrix is particularly easy in the competing
risk case: all rows but the first will be 0, since only the 1→ 2 and 1→ 3 transitions are possible.
Elements of the resulting 3 by 3 matrix P (t) are the probability of going from state i to state
j, since everyone starts in state 1 we are only interested in the first row of P . A computational
nuisance is that the surv1 and surv2 curves do not necessarily jump at the same time. We use
the summary function to select values on a common time scale. (The summary.survfit function
was original written to provide printed values at specified times, but turns out to to also be an
easy way to pluck off values.)

> cifun <- function(surv1, surv2) {

utime <- sort(unique(surv1$time, surv2$time))

jump1 <- diff(c(0, summary(surv1, times=utime, extend=TRUE)$cumhaz))

jump2 <- diff(c(0, summary(surv2, times=utime, extend=TRUE)$cumhaz))

dA <- diag(3)

prev <- matrix(0., nrow= 1+length(utime), ncol=3)

prev[1,1] <- 1 #initial prevalence at time 0: all are in the left box

for (i in 1:length(utime)) {

dA[1,2] <- jump1[i] #fill in the first row of dA(s)

dA[1,3] <- jump2[i]

dA[1,1] <- 1- (jump1[i] + jump2[i])

prev[i+1,] <- prev[i,] %*% dA

}

list(time=c(0, utime), P = prev)

}

> # Get curves for the 8 cases, and save them in a matrix.

> # Since they all come from the same pair of Cox models, the time values

> # for all curves will be the same

> # The cifun function above is only designed to handle one of the 8 covariate

> # patterns at a time, but survival curves can be subscripted.

> temp <- cifun(surv1[1], surv2[1])

> coxtime <- temp$time

> coxdeath <- coxpcm <- matrix(0., nrow=length(temp$time), ncol=8)

> coxdeath[,1] <- temp$P[,3]

> coxpcm[,1] <- temp$P[,2]

> for (i in 2:8){

temp <- cifun(surv1[i], surv2[i])
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coxdeath[,i] <- temp$P[,3]

coxpcm[,i] <- temp$P[,2]

}

> # Print out a M/F results at 20 years

> indx <- match(20*12, coxtime)

> progmat <- matrix(coxpcm[indx,], nrow=4)

> dimnames(progmat) <- list(c("a=50/ms=0.5", "a=50/ms=1.5",

"a=80/ms=0.5", "a=80/ms=1.5"),

c("female", "male"))

> round(100*t(progmat), 1) #males and females at 20 years

a=50/ms=0.5 a=50/ms=1.5 a=80/ms=0.5 a=80/ms=1.5

female 6.6 15.0 4.4 9.9

male 5.7 12.9 3.2 7.3

The above table shows that females are modeled to have a higher risk of 20 year progression,
even though their hazard at any given moment is nearly identical to males. The difference at 20
years is on the order of our “back of the envelope” person-years estimate of 1% progression per
year * 1.5 more years of life for the females, but the progression fraction varies substantially by
group. Eighty year olds have a lower cumulative rate of PCM than 50 year olds due to a higher
death rate, even though the hazard function for PCM rises with age.

A plot of the calculated progression curves is shown below. The left hand panel has predicted
curves for those with a serum mspike of 0.5 and the right for mspike=1.5, and in all cases
females are predicted to have a higher level of observed progression than males. Although the
Cox model hazards are assumed to be proportional, the prevalence curves are not, however. For
those diagnosed at an older age the prevalence curves flatten out after 10 years, simply because
so few living subjects remain who are available to have a PCM event.

> par(mfrow=c(1,2))

> matplot(coxtime/12, coxpcm[,c(1,3,5,7)], col=c(1,1,2,2),

lty=c(1,2,1,2), type='l', lwd=2, ylim=range(coxpcm),

xlab="Years", ylab="Progression to PCM")

> legend(1, .23, c("Female: 60", "Male: 60", "Female: 80", "Male: 80"),

lty=c(1,1,2,2), col=c(1,2,1,2), lwd=2, bty='n')

> matplot(coxtime/12, coxpcm[,c(2,4,6,8)], col=c(1,1,2,2),

lty=c(1,2,1,2), type='l', lwd=2,

xlab="Years", ylab="Progression to PCM")
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In the competing risks case the prevalence function has an alternate form known as the
cumulative incidence function

CIk(t) =

∫ t

0

λk(u)S(u−)du (6)

where λk is the incidence function for outcome k and S is the overall survival curve for “time to
any endpoint”. Proving that P1k as computed by Aalen-Johansen estimate is equivalent to CI(t)
is straightforward. (The label “cumulative incidence” is one of the more unfortunate ones in the
survival lexicon, since we normally use ‘incidence’ and ‘hazard’ as interchangeable synonyms
but the CI is not a cumulative hazard.) For the general multi state case it is simplest to use
the mstate package; it was designed for this task and will also compute appropriate confidence
intervals. The latter are complex since they must account for the uncertainty in the underlying
Cox models.

2.2 Fine-Gray model

For the competing risk case the Fine-Gray model provides an alternate way of looking at the
data. As we saw above, the impact of a particular covariate on the final prevalence values
P can be complex, even if the models for the hazards are relatively simple. Start with the
functions Fk(t) = P1k(t), which can be thought of as the distribution function for the improper
random variable T ∗ = I(endpoint = k)T + I(endpoint 6= k)∞. Fine and Gray refer to Fk as a
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subdistribution function. In an analog to the survival probability in the two state model define

γk(t) = −d log[1− Fk(t)]/dt (7)

and assume that γk(t;x) = γk0(t) exp(Xβ). In a 2 state model γ is the usual hazard function.
In the same way that our multivariate Cox model cfit2 made the simplifying assumption that
the impact of male sex is to increase the hazard for death by a factor of 1.42 independent of the
subject’s age or serum mspike value, this model assumes that each covariate’s effect on log(1−F )
is a constant, independent of other variables. Both assumptions are wonderfully simplifying with
respect to understanding a covariate — assuming of course that either assumption is correct. (In
a multi-state model at least one of the two must be false.)

Let us look at the effect of sex on PCM using the Fine-Gray model, which can be computed
using the cmprsk package. It does not use model formulas so variables need to be vectors or
matrices.

> require(cmprsk)

> temp <- mtemp

> temp$fstat <- as.numeric(event) # 1=censor, 2=pcm, 3=death

> temp$msex <- with(temp, 1* (sex=='M'))

> fgfit1 <- with(temp, crr(etime, fstat, cov1= cbind(age, msex, mspike),

failcode=2, cencode=1, variance=TRUE))

11 cases omitted due to missing values

> fgfit2 <- with(temp, crr(etime, fstat, cov1=cbind(age, msex, mspike),

failcode=3, cencode=1, variance=TRUE))

11 cases omitted due to missing values

> cmat <- rbind("FineGray: PCM" = fgfit1$coef,

"Cox: PCM" = coef(cfit1),

"FineGray: death" = fgfit2$coef,

"Cox: death" = coef(cfit2))

> round(cmat,2)

age msex mspike

FineGray: PCM -0.17 -0.21 0.89

Cox: PCM 0.16 -0.01 0.88

FineGray: death 0.59 0.37 -0.15

Cox: death 0.62 0.35 0.03

The program has determined that female sex increases the PCM outcome by exp(-0.169) = 0.84
fold, for all values of age and mspike. The Cox model shows no effect of sex on the instantaneous
hazard, but as shown in the last section Cox models do predict higher female prevalence. We
had also seen that older subjects are less likely to experience PCM due to the competing risk of
death; this is reflected in the FG model as a negative coefficient for age.

The primary strength of the Fine-Gray model with respect to the Cox model approach is
that if “lifetime risk” is a primary question then the model has given us a simple and digestible
answer to that question: females have a 1.18 fold higher risk. A primary problem of the model
is that we can’t go backwards: there is not a simple analog to the Aalen-Johansen estimator to
carry one from F back to Λ. If one fits a set of Cox models to the arrows (hazards) then the
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boxes (prevalence) of figure 1 can be examined post fit. With the Fine-Gray approach we have
information only on the boxes.

To compare the two fits we can look at what the female/male ratios for each of our four
chosen age/mspike combinations, when P is computed from the Cox models.

> cox.f <- log(1- progmat) #log(1-P)

> round(cox.f[,1] / cox.f[,2], 2)

a=50/ms=0.5 a=50/ms=1.5 a=80/ms=0.5 a=80/ms=1.5

1.17 1.18 1.38 1.38

The Cox models, which assume proportional hazards, show a larger subdistribution hazard
for those who are older, those with higher mspike values, and at longer follow-up times. The
overall average, however, is similar to the single value that results from a Fine-Gray model.
The predicted curves are however nuch different from those shown before for a Cox model; the
Fine-Gray curves are displayed below with predictions for mspike=0.5 on the left and 1.5 on the
right.

> par(mfrow=c(1,2))

> fdata <- model.matrix(~age + sex + mspike, data=tdata)[,-1] #remove intercept

> fpred <- predict(fgfit1, cov1=fdata)

> matplot(fpred[,1]/12, fpred[,c(2,4,6,8)], col=c(1,1,2,2), lty=c(1,2,1,2),

ylim=range(fpred[,-1]),

type='l', lwd=2, xlab="Years", ylab="FG predicted")

> legend(0, .22, c("Female, 60", "Male, 60","Female: 80", "Male, 80"),

col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')

> matplot(fpred[,1]/12, fpred[,c(3,5,7,9)], col=c(1,1,2,2), lty=c(1,2,1,2),

type='l', lwd=2, xlab="Years", ylab="FG predicted")
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This tells a very different story than the Cox model prevalence curves. Which is correct?
Individual non-parametric prevalence curves are not as helpful as one would hope: there are
simply too few progression events when separated into 8 groups. A deeper analysis is called for,
but will have to be left for another day.

3 Conclusions

When working with acute disease such as advanced cancer or end-stage liver disease there is
often a single dominating endpoint. Ordinary single event Kaplan-Meier curves and Cox models
are then efficient and sufficient tools for much of the analysis. Such data was the primary use
case for survival analysis earlier in the author’s career. Data with multiple important endpoints
is now common, and multi-state methods are an important addition to the statistical toolbox.
As shown above, they are now readily available and easy to use.

It is sometimes assumed that the presence of competing risks requires the use of a Fine-Gray
model (I have seen it in referee reports), but this is not correct. The model may often be useful,
but is one available option among many. Grasping the big picture for a multi-state data set is
always a challenge and we should make use of as many tools as possible. We are often minded of
the story of a centerian on his 100th birthday proclaiming that he was looking forward to many
more years because “I read the obituaries every day, and you almost never see someone over 100
there”. It is not always easy to reason correctly from cumulative deaths back to hazard rates.

An advantage of the Cox model is that it has better diagnostic tools available, e.g., evaluation
of the proportional hazards assumption via cox.zph or the martingale residuals, which can help
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to further refine our understanding. It is also easier to link hazard rates to a biologic rationale
(perhaps incorrectly) which can help in explaining a data set.
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