demix-methods {rebmix} | R Documentation |
Returns the data frame containing observations \bm{x}_{1}, …, \bm{x}_{n} and empirical densities f_{1}, …, f_{n} for the kernel density estimation or k-nearest neighbour or bin means \bar{\bm{x}}_{1}, …, \bar{\bm{x}}_{v} and empirical densities f_{1}, …, f_{v} for the histogram preprocessing. Vectors \bm{x} and \bar{\bm{x}} are subvectors of \bm{y} = (y_{1}, …, y_{d})^{\top} and \bar{\bm{y}} = (\bar{y}_{1}, …, \bar{y}_{d})^{\top}.
## S4 method for signature 'REBMIX' demix(x = NULL, pos = 1, variables = expression(1:d), ...) ## ... and for other signatures
x |
see Methods section below. |
pos |
a desired row number in |
variables |
a vector containing indices of variables in subvectors \bm{x} or \bar{\bm{x}}. The default value is |
... |
currently not used. |
signature(x = "REBMIX")
an object of class REBMIX
.
signature(x = "REBMVNORM")
an object of class REBMVNORM
.
Marko Nagode
M. Nagode and M. Fajdiga. The rebmix algorithm for the univariate finite mixture estimation.
Communications in Statistics - Theory and Methods, 40(5):876-892, 2011a. https://doi.org/10.1080/03610920903480890.
M. Nagode and M. Fajdiga. The rebmix algorithm for the multivariate finite mixture estimation.
Communications in Statistics - Theory and Methods, 40(11):2022-2034, 2011b. https://doi.org/10.1080/03610921003725788.
M. Nagode. Finite mixture modeling via REBMIX.
Journal of Algorithms and Optimization, 3(2):14-28, 2015. https://doi.org/10.5963/JAO0302001.
# Generate simulated dataset. n <- c(15, 15) Theta <- new("RNGMIX.Theta", c = 2, pdf = rep("normal", 3)) a.theta1(Theta, 1) <- c(10, 20, 30) a.theta1(Theta, 2) <- c(3, 4, 5) a.theta2(Theta, 1) <- c(3, 2, 1) a.theta2(Theta, 2) <- c(15, 10, 5) simulated <- RNGMIX(Dataset.name = paste("simulated_", 1:4, sep = ""), rseed = -1, n = n, Theta = a.Theta(Theta)) # Number of classes or nearest neighbours to be processed. K <- c(as.integer(1 + log2(sum(n))), # Minimum v follows Sturges rule. as.integer(10 * log10(sum(n)))) # Maximum v follows log10 rule. # Estimate number of components, component weights and component parameters. simulatedest <- REBMIX(model = "REBMVNORM", Dataset = a.Dataset(simulated), Preprocessing = "h", cmax = 4, Criterion = "BIC", pdf = c("n", "n", "n"), K = K[1]:K[2]) # Preprocess simulated dataset. f <- demix(simulatedest, pos = 3, variables = c(1, 3)) f # Plot finite mixture. opar <- plot(simulatedest, pos = 3, nrow = 3, ncol = 1) par(usr = opar[[2]]$usr, mfg = c(2, 1)) text(x = f[, 1], y = f[, 2], labels = format(f[, 3], digits = 3), cex = 0.8, pos = 1)