exact.mrf {GiRaF} | R Documentation |
exact.mrf gives exact sample from the likelihood of a general Potts model defined on a rectangular h x w lattice (h ≤ w) with either a first order or a second order dependency structure and a small number of rows (up to 19 for 2-state models).
exact.mrf(h, w, param, ncolors = 2, nei = 4, pot = NULL, top = NULL, left = NULL, bottom = NULL, right = NULL, corner = NULL, view = FALSE)
h |
the number of rows of the rectangular lattice. |
w |
the number of columns of the rectangular lattice. |
param |
numeric entry setting the interaction parameter (edges parameter) |
ncolors |
the number of states for the discrete random variables. By default, ncolors = 2. |
nei |
the number of neighbors. The latter must be one of nei = 4 or nei = 8, which respectively correspond to a first order and a second order dependency structure. By default, nei = 4. |
pot |
numeric entry setting homogeneous potential on singletons (vertices parameter). By default, pot = NULL |
top, left, bottom, right, corner |
numeric entry setting constant borders for the lattice. By default, top = NULL, left = NULL, bottom = NULL, right = NULL, corner = NULL. |
view |
Logical value indicating whether the draw should be printed. Do not display the optional borders. |
Friel, N. and Rue, H. (2007). Recursive computing and simulation-free inference for general factorizable models. Biometrika, 94(3):661–672.
The “GiRaF-introduction” vignette
# Dimension of the lattice height <- 8 width <- 10 # Interaction parameter Beta <- 0.6 # Isotropic configuration # Beta <- c(0.6, 0.6) # Anisotropic configuration when nei = 4 # Beta <- c(0.6, 0.6, 0.6, 0.6) # Anisotropic configuration when nei = 8 # Number of colors K <- 2 # Number of neighbors G <- 4 # Optional potential on sites potential <- runif(K,-1,1) # Optional borders. Top <- Bottom <- sample(0:(K-1), width, replace = TRUE) Left <- Right <- sample(0:(K-1), height, replace = TRUE) Corner <- sample(0:(K-1), 4, replace = TRUE) # Exact sampling for the default setting exact.mrf(h = height, w = width, param = Beta, view = TRUE) # When specifying the number of colors and neighbors exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, view = TRUE) # When specifying an optional potential on sites exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, pot = potential, view = TRUE) # When specifying possible borders. The users will omit to mention all # the non-existing borders exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, top = Top, left = Left, bottom = Bottom, right = Right, corner = Corner, view = TRUE)