dualgreedy {edesign} | R Documentation |
Starting point is a network A[F] with nf points. Now one has to select ns points of a set of candidate sites to augment the existing network. The aim of maximum entropy sampling is to select a feasible D-optimal design that maximizes the logarithm of the determinant of all principal submatrices of A arising by this expansion.
It is also possible to construct a completely new network, that means nf=0.
This dual-greedy algorithm starts with the matrix A and deletes the worst candidate of each of the stages (1..ns) to reduce this matrix.
dualgreedy(A, nf, ns, etol=0, mattest=TRUE)
A |
Spatial covariance matrix A. |
nf |
Number of stations are forced into every feasible solution. |
ns |
Number of stations have to be added to the existing network. |
etol |
Tolerance for checking positve definiteness (default 0) |
mattest |
Toggles testing matrix |
A[F] denotes the principal submatrix of A having rows and columns indexed by 1..nf.
A object of class monet
containing the following
elements:
S |
Vector containing the indices of the added sites in the solution or 0 for the other sites. |
det |
Determinant of the principal submatrix indexed by the solution. |
C. Gebhardt
Ko, Lee, Queyranne, An exact algorithm for maximum entropy sampling, Operations Research 43 (1995), 684-691.
Gebhardt, C.: Bayessche Methoden in der geostatistischen Versuchsplanung. PhD Thesis, Univ. Klagenfurt, Austria, 2003
O.P. Baume, A. Gebhardt, C. Gebhardt, G.B.M. Heuvelink and J. Pilz: Network optimization algorithms and scenarios in the context of automatic mapping. Computers & Geosciences 37 (2011) 3, 289-294
greedy
, interchange
, maxentropy
x <- c(0.97900601,0.82658702,0.53105628,0.91420190,0.35304969, 0.14768239,0.58000004,0.60690101,0.36289026,0.82022147, 0.95290664,0.07928365,0.04833764,0.55631735,0.06427738, 0.31216689,0.43851418,0.34433556,0.77699357,0.84097327) y <- c(0.36545512,0.72144122,0.95688671,0.25422154,0.48199229, 0.43874199,0.90166634,0.60898628,0.82634713,0.29670695, 0.86879093,0.45277452,0.09386800,0.04788365,0.20557817, 0.61149264,0.94643855,0.78219937,0.53946353,0.70946842) A <- outer(x, x, "-")^2 + outer(y, y, "-")^2 A <- (2 - A)/10 diag(A) <- 0 diag(A) <- 1/20 + apply(A, 2, sum) dualgreedy(A,5,5)