eaf-package {eaf} | R Documentation |
The empirical attainment function (EAF) describes the probabilistic distribution of the outcomes obtained by a stochastic algorithm in the objective space. This package implements plots of summary attainment surfaces and differences between the first-order EAFs. These plots may be used for exploring the performance of stochastic local search algorithms for biobjective optimization problems and help in identifying certain algorithmic behaviors in a graphical way.
Functions:
eafdiffplot | Empirical attainment function differences |
eafplot | Plot the Empirical Attainment Function for two objectives |
read.data.sets | Read several data.frame sets |
Data:
gcp2x2
Metaheuristics for solving the Graph Vertex Coloring Problem
HybridGA
Results of Hybrid GA on vanzyl and Richmond water networks
SPEA2minstoptimeRichmond
Results of SPEA2 when minimising electrical cost and maximising the minimum idle time of pumps on Richmond water network
Extras are available at file.path(system.file(package="eaf"))
:
extdata | External data sets (see read.data.sets ) |
scripts/eaf | EAF command-line program |
scripts/eafplot | Perl script to generate plots of attainment surfaces |
scripts/eafdiff | Perl script to generate plots of EAF differences |
Maintainer: Manuel López-Ibáñez manuel.lopez-ibanez@ulb.ac.be
Contributors: Carlos Fonseca, Luis Paquete, Thomas Stützle, Manuel López-Ibáñez and Marco Chiarandini.
V. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall, Inferential performance assessment of stochastic optimisers and the attainment function, in Evolutionary Multi-Criterion Optimization. First International Conference, EMO 2001 (E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, eds.), vol. 1993 of Lecture Notes in Computer Science, pp. 213-225, Berlin: Springer, 2001.
V. Grunert da Fonseca and C. M. Fonseca, The attainment-function approach to stochastic multiobjective optimizer assessment and comparison. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Experimental Methods for the Analysis of Optimization Algorithms, pages 103-130, Springer, Berlin, Germany, 2010.
M. López-Ibáñez, L. Paquete, and T. Stützle. Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Experimental Methods for the Analysis of Optimization Algorithms, pages 209–222. Springer, Berlin, Germany, 2010. doi: 10.1007/978-3-642-02538-9_9
Useful links:
Report bugs at https://github.com/MLopez-Ibanez/eaf/issues
data(gcp2x2) tabucol<-subset(gcp2x2, alg!="TSinN1") tabucol$alg<-tabucol$alg[drop=TRUE] eafplot(time+best~run,data=tabucol,subset=tabucol$inst=="DSJC500.5") eafplot(time+best~run|inst,groups=alg,data=gcp2x2) eafplot(time+best~run|inst,groups=alg,data=gcp2x2, percentiles=c(0,50,100),include.extremes=TRUE, cex=1.4, lty=c(2,1,2),lwd=c(2,2,2), col=c("black","blue","grey50")) A1<-read.data.sets(file.path(system.file(package="eaf"),"extdata","ALG_1_dat")) A2<-read.data.sets(file.path(system.file(package="eaf"),"extdata","ALG_2_dat")) eafplot(A1,A2, percentiles=c(50)) eafplot(list(A1=A1, A2=A2), percentiles=c(50)) eafdiffplot(A1, A2) ## Save to a PDF file # dev.copy2pdf(file="eaf.pdf", onefile=TRUE, width=5, height=4)